大大们。本人急求数控毕业论文!!

大大们。本人急求数控毕业论文!!,第1张

(4)现代诊断技术 随着电信技术的发展,IC和微机性价比的提高,如通信诊断也称远程诊断,即利用电话通讯线把带故障的CNC系统和专业维修中心的专用通讯诊断计算机通过连接进行测试诊断
三 数控机床各部故障分析及维修
31 数控机床主轴伺服系统故障检查及维修
电子工业的飞速发展,使各种集成度高、性能先进的调速驱动层出不穷,给数控机床的更新换代提供了有利条件,但对于目前大中型企业还无法将旧数控机床全部改造的现实,修理旧的驱动系统,仍是维修战线上的一项艰巨任务。在维修主回路采用错位选触无环流可逆调速驱动系统的数控车床中所遇到的部分故障及处理方法。
1 故障现象:18m卧车在点动时,花盘来回摆动。
检查:测量驱动控制系统中的±20V直流稳压电源的纹波为4V峰峰值,大大超过了规定的范围。
分析:在控制系统的放大电路中,高、低通滤波器可以滤掉,如:测速机反馈,电流反馈,电压反馈中的各次谐波干扰信号,但无法滤除系统本身直流电源电路中的谐波分量,因它存在于整个系统中,这些谐波进入放大器就会使放大器阻塞,使系统产生各种不正常的现象。在点动状态下,因电机的转速较低,这些谐波已超过了点动时的电压值,造成了系统的振荡,使主轴花盘来回摆动,而且一旦去除谐波信号,故障马上消失。
处理:将电压板中的100MF和1000MF滤波电容换下焊上新电容,并测量纹波只有几个毫伏后将电源板安装好,开机试运行,故障消除。
2 故障现象:5m立车在运行加工中发出哐哐声后,烧保险。
检查:发现5FC5FG、5RG5RQ正反组全无脉冲输出(线路见图2),测量结果,IC7反相器损坏,又发现1FG1FC输出波形较其他波形幅值低得多。
分析:5m立车主驱动直流电机的驱动电压由晶闸管全控桥反并联整流电路提供。12路触发脉冲中,有两路消失,另一路触发脉冲的幅值较其它正常触发脉冲要短三分之一,当出现哐哐的齿轮撞击声时,误以为液压马达联轴节处出现了问题,但过了一会儿两路保险丝烧坏,实际上,在这次故障的前一段时间里已烧过两次保险,当时只认为是偶然的电网不稳造成,因换上保险丝后,故障就消除了。由于5m立车加工运行时的转速较低,虽然可控硅整流电路是桥式整流,但是线路中触发脉冲丢失和幅值小同时存在时,也会造成电流不连续,输出的电压不稳,从而使电机的转速不稳。一开始出现的哐哐声,实际就是转速不稳的表现。由于电流断续而引起的烧保险故障能发生在运行后停车和正常运行的任何时刻。
处理:将放大管T1(另一组触发电路中的放大管,功能如图2中的T7)及反相器IC7换下,故障消除。
32 机床PLC初始故障的诊断
机床PLC初始故障的诊断为了保护机床和维修方便,PLC有显示和检测机床故障的能力。一旦发生故障,维修人员就能根据机床的故障显示号去确定故障类别,予以排除。但在实际加工过程中,我们发现有时PLC同时显示几个故障,它们是由某一个故障引起的连锁故障,排除了初始的引发故障,其它故障报警就消失了。可是从机床PLC显示的所有报警故障中,维修人员并不知道哪个故障是初始引发故障,维修人员只能逐个故障去查,这就增加了维修难度。机床PLC初始故障诊断功能,通过PLC程序,准确判断出初始故障的报警号。维修中,首先排除初始故障,其它引发故障自行消失,这样就极大地方便了机床的维修,提高了机床维修的快速性和准确性。 2 初始故障诊断原理设计的PLC程序不单单是把各个故障都能检测和显示出来,还能把最关键的初始故障自动判断出来。
初始故障诊断原理:以3个故障为例,其中设置了3个故障检测位,分别为R5000、R5100、R5200;3个初始故障检测位为R5002、R5102、R5202;F1491为系统复位信号。初始状态时,无报警出现,故障检测位都为“0”,初始故障检测位也都为“0”,复位信号F1491为“0”。在3个故障中假设首先发生第二个故障。在程序扫描的第一个周期内,其对应的故障检测位R5100变为“1”,R5002、R5202、F1491初始值为“0”,初始故障检测位R5102变为“1”,通过自锁保持为“1”,直到故障被排除,系统复位信号发出后“1”状态才被解除。在程序扫描的第二个周期内,R5102保持为“1”,实现了对R5001、R5201的封锁,即使此时另外某一个故障检测位为“1”,也不能导致其初始故障检测位变为“1”。通过此PLC程序的控制,就能从同时发生的众多故障里准确地判断出初始故障。在JCS018数控机床中,遇到了多个故障同时发生的问题,如换刀报警和液压报警同时出现。维修时,先检查液压控制部分,然后才能确认故障出在换刀过程中。检查后我们才知道换刀的动力由液压驱动来提供。PLC控制程序设计中,当遇到换刀故障时,为防止更大的意外发生,在报警的同时也断开了液压控制,因此换刀故障发生时出现了两个报警信息。为遵循原机床的设计思路,而又能准确地发出报警信息,给JCS018数控机床增加了对初始故障的检查功能。按照前面的程序分析,换刀和液压故障检测位分别为R5000和R5100,初始故障可从初始故障检测位R5002和R5102读出。当该机床再发生类似故障时,就能很快地判断出初始故障。
33 数控设备检测元件故障及维修
检测元件是数控机床伺服系统的重要组成部分,它起着检测各控制轴的位移和速度的作用,它把检测到的信号反馈回去,构成闭环系统。测量方式可分为直接测量和间接测量:直接测量就是对机床的直线位移采用直线型检测元件测量,直接测量常用的检测元件一般包括:直线感应同步器、计量光栅、磁尺激光干涉仪。间接测量就是对机床的直线位移采用回转型检测元件测量,间接测量常用的检测元件一般包括:脉冲编码器、旋转变压器、圆感应同步器、圆光栅和圆磁栅。
当机床出现如下故障现象时,应考虑是否是由检测元件的故障引起的:
1机械振荡(加/减速时):
(1)脉冲编码器出现故障,此时检查速度单元上的反馈线端子电压是否在某几点电压下降,如有下降表明脉冲编码器不良,更换编码器。
(2)脉冲编码器十字联轴节可能损坏,导致轴转速与检测到的速度不同步,更换联轴节。
(3)测速发电机出现故障,修复,更换测速机。
2机械暴走(飞车):
在检查位置控制单元和速度控制单元的情况下,应检查:
(1)脉冲编码器接线是否错误,检查编码器接线是否为正反馈,A相和B相是否接反。
(2)脉冲编码器联轴节是否损坏,更换联轴节。
(3)检查测速发电机端子是否接反和励磁信号线是否接错。
3主轴不能定向或定向不到位:
在检查定向控制电路设置和调整,检查定向板,主轴控制印刷电路板调整的同时,应检查位置检测器(编码器)是否不良,此时测编码器输出波形。
4坐标轴振动进给:
在检查电动机线圈是否短路,机械进给丝杠同电机的连接是否良好,检查整个伺服系统是否稳定的情况下,检查脉冲编码是否良好、联轴节联接是否平稳可靠、测速机是否可靠。
检测元件是一种极其精密和容易受损的器件,一定要从下面几个方面注意,进行正确的使用和维护保养。
1.不能受到强烈振动和摩擦以免损伤代码板,不能受到灰尘油污的污染,以免影响正常信号的输出。
2.工作环境周围温度不能超标,额定电源电压一定要满足,以便于集成电路片子的正常工作。
3.要保证反馈线电阻,电容的正常,保证正常信号的传输。
4.防止外部电源、噪声干扰,要保证屏蔽良好,以免影响反馈信号。
5.安装方式要正确,如编码器联接轴要同心对正,防止轴超出允许的载重量,以保证其性能的正常。
总之,在数控设备的故障中,检测元件的故障比例是比较高的,只要正确的使用并加强维护保养,对出现的问题进行深入分析,就一定能降低故障率,并能迅速解决故障,保证设备的正常运行。
34 数控机床加工精度异常故障及维修
生产中经常会遇到数控机床加工精度异常的故障。此类故障隐蔽性强、诊断难度大。导致此类故障的原因主要有五个方面:(1)机床进给单位被改动或变化。(2)机床各轴的零点偏置(NULL OFFSET)异常。(3)轴向的反向间隙(BACKLASH)异常。(4)电机运行状态异常,即电气及控制部分故障。(5)机械故障,如丝杆、轴承、轴联器等部件。此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。
1系统参数发生变化或改动
系统参数主要包括机床进给单位、零点偏置、反向间隙等等。例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。机床修理过程中某些处理,常常影响到零点偏置和间隙的变化,故障处理完毕应作适时地调整和修改;另一方面,由于机械磨损严重或连结松动也可能造成参数实测值的变化,需对参数做相应的修改才能满足机床加工精度的要求。
2机械故障导致的加工精度异常
一台THM6350卧式加工中心,采用FANUC 0i-MA数控系统。一次在铣削汽轮机叶片的过程中,突然发现Z轴进给异常,造成至少1mm的切削误差量(Z向过切)。调查中了解到:故障是突然发生的。机床在点动、MDI *** 作方式下各轴运行正常,且回参考点正常;无任何报警提示,电气控制部分硬故障的可能性排除。分析认为,主要应对以下几方面逐一进行检查。
(1)检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。
(2)在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。由此判断,机械方面可能存在隐患。
(3)检查机床Z轴精度。用手脉发生器移动Z轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给01mm),配合百分表观察Z轴的运动情况。在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床Z轴运动的实际距离d=d1=d2=d3…=01mm,说明电机运行良好,定位精度良好。而返回机床实际运动位移的变化上,可以分为四个阶段:①机床运动距离d1>d=01mm(斜率大于1);②表现出为d=01mm>d2>d3(斜率小于1);③机床机构实际未移动,表现出最标准的反向间隙;④机床运动距离与手脉给定值相等(斜率等于1),恢复到机床的正常运动。
无论怎样对反向间隙(参数1851)进行补偿,其表现出的特征是:除第③阶段能够补偿外,其他各段变化仍然存在,特别是第①阶段严重影响到机床的加工精度。补偿中发现,间隙补偿越大,第①段的移动距离也越大。
分析上述检查认为存在几点可能原因:一是电机有异常;二是机械方面有故障;三是存在一定的间隙。为了进一步诊断故障,将电机和丝杠完全脱开,分别对电机和机械部分进行检查。电机运行正常;在对机械部分诊断中发现,用手盘动丝杠时,返回运动初始有非常明显的空缺感。而正常情况下,应能感觉到轴承有序而平滑的移动。经拆检发现其轴承确已受损,且有一颗滚珠脱落。更换后机床恢复正常。
3机床电气参数未优化电机运行异常
一台数控立式铣床,配置FANUC 0-MJ数控系统。在加工过程中,发现X轴精度异常。检查发现X轴存在一定间隙,且电机启动时存在不稳定现象。用手触摸X轴电机时感觉电机抖动比较严重,启停时不太明显,JOG方式下较明显。
分析认为,故障原因有两点,一是机械反向间隙较大;二是X轴电机工作异常。利用FANUC系统的参数功能,对电机进行调试。首先对存在的间隙进行了补偿;调整伺服增益参数及N脉冲抑制功能参数,X轴电机的抖动消除,机床加工精度恢复正常。
4机床位置环异常或控制逻辑不妥
一台TH61140镗铣床加工中心,数控系统为FANUC 18i,全闭环控制方式。加工过程中,发现该机床Y轴精度异常,精度误差最小在0006mm左右,最大误差可达到1400mm。检查中,机床已经按照要求设置了G54工件坐标系。在MDI方式下,以G54坐标系运行一段程序即“G90 G54 Y80 F100;M30;”,待机床运行结束后显示器上显示的机械坐标值为“-1046605”,记录下该值。然后在手动方式下,将机床Y轴点动到其他任意位置,再次在MDI方式下执行上面的语句,待机床停止后,发现此时机床机械坐标数显值为“-1046992”,同第一次执行后的数显示值相比相差了0387mm。按照同样的方法,将Y轴点动到不同的位置,反复执行该语句,数显的示值不定。用百分表对Y轴进行检测,发现机械位置实际误差同数显显示出的误差基本一致,从而认为故障原因为Y轴重复定位误差过大。对Y轴的反向间隙及定位精度进行仔细检查,重新作补偿,均无效果。因此怀疑光栅尺及系统参数等有问题,但为什么产生如此大的误差,却未出现相应的报警信息呢?进一步检查发现,该轴为垂直方向的轴,当 Y轴松开时,主轴箱向下掉,造成了超差。
对机床的PLC逻辑控制程序做了修改,即在Y轴松开时,先把Y轴使能加载,再把Y轴松开;而在夹紧时,先把轴夹紧后,再把Y轴使能去掉。调整后机床故障得以解决。
四 数控机床的维护
数控系统是数控机床的核心部件,因此,数控机床的维护主要是数控系统的维护。数控系统经过一段较长时间的使用,电子元器件性能要老化甚至损坏,有些机械部件更是如此,为了尽量地延长元器件的寿命和零部件的磨损周期,防止各种故障,特别是恶性事故的发生,就必须对数控系统进行日常的维护。概括起来,要注意以下几个方面。
(1)制订数控系统日常维护的规章制度
根据各种部件特点,确定各自保养条例。如明文规定哪些地方需要天天清理(如CNC系统的输入/输出单元——光电阅读机的清洁,检查机械结构部分是否润滑良好等),哪些部件要定期检查或更换(如直流伺服电动机电刷和换向器应每月检查一次)。
(2)应尽量少开数控柜和强电柜的门
因为在机加工车间的空气中一般都含有油雾、灰尘甚至金属粉末。一旦它们落在数控系统内的印制线路或电器件上,容易引起元器件间绝缘电阻下降,甚至导致元器件及印制线路的损坏。有的用户在夏天为了使数控系统超负荷长期工作,打开数控柜的门来散热,这是种绝不可取的方法,最终会导致数控系统的加速损坏。正确的方法是降低数控系统的外部环境温度。因此,应该有一种严格的规定,除非进行必要的调整和维修,不允许随便开启柜门,更不允许在使用时敞开柜门。
(3)定时清扫数控柜的散热通风系统
应每天检查数控系统柜上各个冷却风扇工作是否正常,应视工作环境状况,每半年或每季度检查一次风道过滤器是否有堵塞现象。如果过滤网上灰尘积聚过多,需及时清理,否则将会引起数控系统柜内温度高(一般不允许超过55℃),造成过热报警或数控系统工作不可靠。
(4)经常监视数控系统用的电网电压
FANUC公司生产的数控系统,允许电网电压在额定值的85%~110%的范围内波动。如果超出此范围,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件损坏。
(5)定期更换存储器用电池
FANUC公司所生产的数控系统内的存储器有两种:
(a)不需电池保持的磁泡存储器。
(b)需要用电池保持的CMOS RAM器件,为了在数控系统不通电期间能保持存储的内容,内部设有可充电电池维持电路,在数控系统通电时,由+5V电源经一个二极管向CMOS RAM供电,并对可充电电池进行充电;当数控系统切断电源时,则改为由电池供电来维持CMOS RAM内的信息,在一般情况下,即使电池尚未失效,也应每年更换一次电池,以便确保系统能正常工作。另外,一定要注意,电池的更换应在数控系统供电状态下进行。
6 数控系统长期不用时的维护
为提高数控系统的利用率和减少数控系统的故障,数控机床应满负荷使用,而不要长期闲置不用,由于某种原因,造成数控系统长期闲置不用时,为了避免数控系统损坏,需注意以下两点:
(1)要经常给数控系统通电,特别是在环境湿度较大的梅雨季节更应如此,在机床锁住不动的情况下(即伺服电动机不转时),让数控系统空运行。利用电器元件本身的发热来驱散数控系统内的潮气,保证电子器件性能稳定可靠,实践证明,在空气湿度较大的地区,经常通电是降低故障率的一个有效措施。
(2)数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,应将电刷从直流电动机中取出,以免由于化学腐蚀作用,使换向器表面腐蚀,造成换向性能变坏,甚至使整台电动机损坏。
参 考 文 献
1 张超英,谢富春编 数控编程技术 北京:化学工业出版社,2004
2 张超英,罗学科编 数控加工技术综合实训 北京:机械工业出版社,2003
3 数控技术培训系列教程 世纪星数控系统编程\ *** 作说明书 华中数控2001
4 全国数控培训网络天津分中心编 数控编程 北京:机械工业出版社,1997
致谢
四年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。四、亲友的大力支持下,走得辛苦却也收获满囊,在论文即将付梓之际,思绪万千,心情久久不能平静。 伟人、名人为我所崇拜,可是我更急切地要把我的敬意和赞美献给一位平凡的人,我的导师。我不是您最出色的学生,而您却是我最尊敬的老师。您治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。授人以鱼不如授人以渔,置身其间,耳濡目染,潜移默化,使我不仅接受了全新的思想观念,树立了宏伟的学术目标,领会了基本的思考方式,从论文题目的选定到论文写作的指导,经由您悉心的点拨,再经思考后的领悟,常常让我有“山重水复疑无路,柳暗花明又一村”。
感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚谢意!
同时也感谢学院为我提供良好的做毕业设计的环境。
最后再一次感谢所有在毕业设计中曾经帮助过我的良师益友和同学,以及在设计中被我引用或参考的论著的作者。

1、个人如何投资建设电动汽车充电站,需要办的手续要根据各地工商局的规定而定,每个地方工商局的规定可能会有所不同。个人可以注册成某某企业管理有限公司,需要先起一个名字,去工商局核名,再办营业执照,再办代码证,再办税务登记证。经营范围,经营者可以写上充电站系统管理服务与咨询。但上述内容这个仅供参考,具体以工商局核定的为准,所需手续和证件详情建议到当地工商局咨询。

2、汽车充电站和汽车加油站相类似,是一种“加电”的设备。是一种高效率的充电器,可以快速的给手机 电动车电动汽车等充电。汽车充电业务模式是指电动汽车用户在汽车电能将要耗尽的时候选择到固定地点的充电站和充站桩为汽车的电池进行直接充电的模型。这是电动汽车充电站最先考虑的业务模式,在这种业务模式下,电动汽车用户通过在充电站/充电桩直接为汽车充电,即时消费电力产品并通过现场付费的模式支付费用,完成交易。

扩展资料:

(1)充电站规划要符合国家、地方有关充电站规划设计规范的要求,要与城镇总体规划、城镇交通规划相协调。

充电站

(2)根据充电站的服务特性,其规划布局要遵循“面线结合”的原则。参考国家电网公司目前的充电站布局原则:县乡道由各地市根据实际情况另行制定指标标准;镇区充电站服务半径应控制在09公里~12公里之间。

(3)充电站的位置要满足文物保护、环境保护、交通安全、消防规定等要求。

(4)充电站规划应与土地利用总体规划相协调,坚持节约集约用地的原则。

(5)充电站规划布局需具备一定的d性,既能满足近期需求,又能为远期发展留有余地

参考资料来源:百度百科 :汽车充电站

一、三坐标测量机的产生
三坐标测量机(Coordinate Measuring Machining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。它的出现,一方面是由于自动机床、数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。1960年,英国FERRANTI公司研制成功世界上第一台三坐标测量机,到20世纪60年代末,已有近十个国家的三十多家公司在生产CMM,不过这一时期的CMM尚处于初级阶段。进入20世纪80年代后,以ZEISS、LEITZ、DEA、LK、三丰、SIP、FERRANTI、MOORE等为代表的众多公司不断推出新产品,使得CMM的发展速度加快。现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。目前,CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备。
二、三坐标测量机的组成及工作原理
(一)CMM的组成
三坐标测量机是典型的机电一体化设备,它由机械系统和电子系统两大部分组成。
(1)机械系统:一般由三个正交的直线运动轴构成。如图9-1所示结构中,X向导轨系统装在工作台上,移动桥架横梁是Y向导轨系统,Z向导轨系统装在中央滑架内。三个方向轴上均装有光栅尺用以度量各轴位移值。人工驱动的手轮及机动、数控驱动的电机一般都在各轴附近。用来触测被检测零件表面的测头装在Z轴端部。
(2)电子系统:一般由光栅计数系统、测头信号接口和计算机等组成,用于获得被测坐标点数据,并对数据进行处理。
(二)CMM的工作原理
三坐标测量机是基于坐标测量的通用化数字测量设备。它首先将各被测几何元素的测量转化为对这些几何元素上一些点集坐标位置的测量,在测得这些点的坐标位置后,再根据这些点的空间坐标值,经过数学运算求出其尺寸和形位误差。如图9-2所示,要测量工件上一圆柱孔的直径,可以在垂直于孔轴线的截面I内,触测内孔壁上三个点(点1、2、3),则根据这三点的坐标值就可计算出孔的直径及圆心坐标OI;如果在该截面内触测更多的点(点1,2,…,n,n为测点数),则可根据最小二乘法或最小条件法计算出该截面圆的圆度误差;如果对多个垂直于孔轴线的截面圆(I,II,…,m,m为测量的截面圆数)进行测量,则根据测得点的坐标值可计算出孔的圆柱度误差以及各截面圆的圆心坐标,再根据各圆心坐标值又可计算出孔轴线位置;如果再在孔端面A上触测三点,则可计算出孔轴线对端面的位置度误差。由此可见,CMM的这一工作原理使得其具有很大的通用性与柔性。从原理上说,它可以测量任何工件的任何几何元素的任何参数。
三、三坐标测量机的分类
(一)按CMM的技术水平分类
1.数字显示及打印型
这类CMM主要用于几何尺寸测量,可显示并打印出测得点的坐标数据,但要获得所需的几何尺寸形位误差,还需进行人工运算,其技术水平较低,目前已基本被陶汰。
2.带有计算机进行数据处理型
这类CMM技术水平略高,目前应用较多。其测量仍为手动或机动,但用计算机处理测量数据,可完成诸如工件安装倾斜的自动校正计算、坐标变换、孔心距计算、偏差值计算等数据处理工作。
3.计算机数字控制型
这类CMM技术水平较高,可像数控机床一样,按照编制好的程序自动测量。
(二)按CMM的测量范围分类
1.小型坐标测量机
这类CMM在其最长一个坐标轴方向(一般为X轴方向)上的测量范围小于500mm,主要用于小型精密模具、工具和刀具等的测量。
2.中型坐标测量机
这类CMM在其最长一个坐标轴方向上的测量范围为500~2000mm,是应用最多的机型,主要用于箱体、模具类零件的测量。
3.大型坐标测量机
这类CMM在其最长一个坐标轴方向上的测量范围大于2000mm,主要用于汽车与发动机外壳、航空发动机叶片等大型零件的测量。
(三)按CMM的精度分类
1.精密型CMM
其单轴最大测量不确定度小于1×10-6L(L为最大量程,单位为mm),空间最大测量不确定度小于(2~3)×10-6L,一般放在具有恒温条件的计量室内,用于精密测量。
2.中、低精度CMM
低精度CMM的单轴最大测量不确定度大体在1×10-4L左右,空间最大测量不确定度为(2~3)×10-4L,中等精度CMM的单轴最大测量不确定度约为1×10-5L,空间最大测量不确定度为(2~3)×10-5L。这类CMM一般放在生产车间内,用于生产过程检测。
(四)按CMM的结构形式分类
按照结构形式,CMM可分为移动桥式、固定桥式、龙门式、悬臂式、立柱式等,见下节。
第二节 三坐标测量机的机械结构
一、结构形式
三坐标测量机是由三个正交的直线运动轴构成的,这三个坐标轴的相互配置位置(即总体结构形式)对测量机的精度以及对被测工件的适用性影响较大。
二、工作台
早期的三坐标测量机的工作台一般是由铸铁或铸钢制成的,但近年来,各生产厂家已广泛采用花岗岩来制造工作台,这是因为花岗岩变形小、稳定性好、耐磨损、不生锈,且价格
低廉、易于加工。有些测量机装有可升降的工作台,以扩大Z轴的测量范围,还有些测量机备有旋转工作台,以扩大测量功能。
三、导轨
导轨是测量机的导向装置,直接影响测量机的精度,因而要求其具有较高的直线性精度。在三坐标测量机上使用的导轨有滑动导轨、滚动导轨和气浮导轨,但常用的为滑动导轨和气浮导轨,滚动导轨应用较少,因为滚动导轨的耐磨性较差,刚度也较滑动导轨低。在早期的三坐标测量机中,许多机型采用的是滑动导轨。滑动导轨精度高,承载能力强,但摩擦阻力大,易磨损,低速运行时易产生爬行,也不易在高速下运行,有逐步被气浮导轨取代的趋势。目前,多数三坐标测量机已采用空气静压导轨(又称为气浮导轨、气垫导轨),它具有许多优点,如制造简单、精度高、摩擦力极小、工作平稳等。
气浮技术的发展使三坐标测量机在加工周期和精度方面均有很大的突破。目前不少生产厂在寻找高强度轻型材料作为导轨材料,有些生产厂已选用陶瓷或高膜量型的碳素纤维作为移动桥架和横梁上运动部件的材料。另外,为了加速热传导,减少热变形,ZEISS公司采用带涂层的抗时效合金来制造导轨,使其时效变形极小且使其各部分的温度更加趋于均匀一致,从而使整机的测量精度得到了提高,而对环境温度的要求却又可以放宽些。
第三节 三坐标测量机的测量系统
三坐标测量机的测量系统由标尺系统和测头系统构成,它们是三坐标测量机的关键组成部分,决定着CMM测量精度的高低。
一、标尺系统
标尺系统是用来度量各轴的坐标数值的,目前三坐标测量机上使用的标尺系统种类很多,它们与在各种机床和仪器上使用的标尺系统大致相同,按其性质可以分为机械式标尺系统(如精密丝杠加微分鼓轮,精密齿条及齿轮,滚动直尺)、光学式标尺系统(如光学读数刻线尺,光学编码器,光栅,激光干涉仪)和电气式标尺系统(如感应同步器,磁栅)。根据对国内外生产CMM所使用的标尺系统的统计分析可知,使用最多的是光栅,其次是感应同步器和光学编码器。有些高精度CMM的标尺系统采用了激光干涉仪。
二、测头系统
(一)测头
三坐标测量机是用测头来拾取信号的,因而测头的性能直接影响测量精度和测量效率,没有先进的测头就无法充分发挥测量机的功能。在三坐标测量机上使用的测头,按结构原理可分为机械式、光学式和电气式等;而按测量方法又可分为接触式和非接触式两类。
1.机械接触式测头
机械接触式测头为刚性测头,根据其触测部位的形状,可以分为圆锥形测头、圆柱形测头、球形测头、半圆形测头、点测头、V型块测头等(如图9-5所示)。这类测头的形状简单,制造容易,但是测量力的大小取决于 *** 作者的经验和技能,因此测量精度差、效率低。目前除少数手动测量机还采用此种测头外,绝大多数测量机已不再使用这类测头。
2.电气接触式测头
电气接触式测头目前已为绝大部分坐标测量机所采用,按其工作原理可分为动态测头和静态测头。
(1)动态测头
测杆安装在芯体上,而芯体则通过三个沿圆周1200分布的钢球安放在三对触点上,当测杆没有受到测量力时,芯体上的钢球与三对触点均保持接触,当测杆的球状端部与工件接触时,不论受到X、Y、Z哪个方向的接触力,至少会引起一个钢球与触点脱离接触,从而引起电路的断开,产生阶跃信号,直接或通过计算机控制采样电路,将沿三个轴方向的坐标数据送至存储器,供数据处理用。
可见,测头是在触测工件表面的运动过程中,瞬间进行测量采样的,故称为动态测头,也称为触发式测头。动态测头结构简单、成本低,可用于高速测量,但精度稍低,而且动态测头不能以接触状态停留在工件表面,因而只能对工件表面作离散的逐点测量,不能作连续的扫描测量。目前,绝大多数生产厂选用英国RENISHAW公司生产的触发式测头。
(2)静态测头
静态测头除具备触发式测头的触发采样功能外,还相当于一台超小型三坐标测量机。测头中有三维几何量传感器,在测头与工件表面接触时,在X、Y、Z三个方向均有相应的位移量输出,从而驱动伺服系统进行自动调整,使测头停在规定的位移量上,在测头接近静止的状态下采集三维坐标数据,故称为静态测头。静态测头沿工件表面移动时,可始终保持接触状态,进行扫描测量,因而也称为扫描测头。其主要特点是精度高,可以作连续扫描,但制造技术难度大,采样速度慢,价格昂贵,适合于高精度测量机使用。目前由LEITZ、ZEISS和KERRY等厂家生产的静态测头均采用电感式位移传感器,此时也将静态测头称为三向电感测头。图9-7为ZEISS公司生产的双片簧层叠式三维电感测头的结构。
测头采用三层片簧导轨形式,三个方向共有三层,每层由两个片簧悬吊。转接座17借助两个X向片簧16构成的平行四边形机构可作X向运动。该平行四边形机构固定在由Y向片簧1构成的平行四边形机构的下方,借助片簧1,转接座可作Y向运动。Y向平行四边形机构固定在由Z向片簧3构成的平行四边形机构的下方,依靠它的片簧,转接座可作Z向运动。为了增强片簧的刚度和稳定性,片簧中间为金属夹板。为保证测量灵敏、精确,片簧不能太厚,一般取01mm。由于Z向导轨是水平安装,故用三组d簧2、14、15加以平衡。可调d簧14的上方有一螺纹调节机构,通过平衡力调节微电机10转动平衡力调节螺杆11,使平衡力调节螺母套13产生升降来自动调整平衡力的大小。为了减小Z向d簧片受剪切力而产生变位,设置了d簧2和15,分别用于平衡测头Y向和X向部件的自重。
在每一层导轨中各设置有三个部件:①锁紧机构:如图9-7b所示,在其定位块24上有一凹槽,与锁紧杠杆22上的锁紧钢球23精确配合,以确定导轨的“零位”。在需打开时,可让电机20反转一角度,则此时该向导轨处于自由状态。需锁紧时,再使电机正转一角度即可。②位移传感器:用以测量位移量的大小,如图9-7c所示,在两层导轨上,一面固定磁芯27,另一面固定线圈26和线圈支架25。③阻尼机构:用以减小高分辨率测量时外界振动的影响。如图9-7d所示,在作相对运动的上阻尼支架28和下阻尼支架31上各固定阻尼片29和30,在两阻尼片间形成毛细间隙,中间放入粘性硅油,使两层导轨在运动时,产生阻尼力,避免由于片簧机构过于灵敏而产生振荡。
(3)光学测头
在多数情况下,光学测头与被测物体没有机械接触,这种非接触式测量具有一些突出优点,主要体现在:1)由于不存在测量力,因而适合于测量各种软的和薄的工件;2)由于是非接触测量,可以对工件表面进行快速扫描测量;3)多数光学测头具有比较大的量程,这是一般接触式测头难以达到的;4)可以探测工件上一般机械测头难以探测到的部位。近年来,光学测头发展较快,目前在坐标测量机上应用的光学测头的种类也较多,如三角法测头、激光聚集测头、光纤测头、体视式三维测头、接触式光栅测头等。下面简要介绍一下三角法测头的工作原理。(二)测头附件
为了扩大测头功能、提高测量效率以及探测各种零件的不同部位,常需为测头配置各种附件,如测端、探针、连接器、测头回转附件等。
1.测端
对于接触式测头,测端是与被测工件表面直接接触的部分。对于不同形状的表面需要采用不同的测端。图9-9为一些常见的测端形状。
2.探针
探针是指可更换的测杆。在有些情况下,为了便于测量,需选用不同的探针。探针对测量能力和测量精度有较大影响,在选用时应注意:1)在满足测量要求的前提下,探针应尽量短;2)探针直径必须小于测端直径,在不发生干涉条件下,应尽量选大直径探针;3)在需要长探针时,可选用硬质合金探针,以提高刚度。若需要特别长的探针,可选用质量较轻的陶瓷探针。
3.连接器
为了将探针连接到测头上、测头连接到回转体上或测量机主轴上,需采用各种连接器。常用的有星形探针连接器、连接轴、星形测头座等。
4.回转附件
对于有些工件表面的检测,比如一些倾斜表面、整体叶轮叶片表面等,仅用与工作台垂直的探针探测将无法完成要求的测量,这时就需要借助一定的回转附件,使探针或整个测头回转一定角度再进行测量,从而扩大测头的功能。
常用的回转附件为如图9-11a所示的测头回转体。它可以绕水平轴A和垂直轴B回转,在它的回转机构中有精密的分度机构,其分度原理类似于多齿分度盘。在静盘中有48根沿圆周均匀分布的圆柱,而在动盘中有与之相应的48个钢球,从而可实现以75o为步距的转位。它绕垂直轴的转动范围为360o,共48个位置,绕水平轴的转动范围为0o~105o,共15个位置。由于在绕水平轴转角为0o(即测头垂直向下)时,绕垂直轴转动不改变测端位置,这样测端在空间一共可有48×14+1=673个位置。能使测头改变姿态,以扩展从各个方向接近工件的能力。目前在测量机上使用较多的测头回转体为RENISHAW公司生产的各种测头回转体,
第四节 三坐标测量机的控制系统
一、控制系统的功能
控制系统是三坐标测量机的关键组成部分之一。其主要功能是:读取空间坐标值,控制测量瞄准系统对测头信号进行实时响应与处理,控制机械系统实现测量所必需的运动,实时监控坐标测量机的状态以保障整个系统的安全性与可靠性等。
二、控制系统的结构
按自动化程度分类,坐标测量机分为手动型、机动型和CNC型。早期的坐标测量机以手动型和机动型为主,其测量是由 *** 作者直接手动或通过 *** 纵杆完成各个点的采样,然后在计算机中进行数据处理。随着计算机技术及数控技术的发展,CNC型控制系统变得日益普及,它是通过程序来控制坐标测量机自动进给和进行数据采样,同时在计算机中完成数据处理。
1.手动型与机动型控制系统
这类控制系统结构简单, *** 作方便,价格低廉,在车间中应用较广。这两类坐标测量机的标尺系统通常为光栅,测头一般采用触发式测头。其工作过程是:每当触发式测头接触工件时,测头发出触发信号,通过测头控制接口向CPU发出一个中断信号,CPU则执行相应的中断服务程序,实时地读出计数接口单元的数值,计算出相应的空间长度,形成采样坐标值X、Y和Z,并将其送入采样数据缓冲区,供后续的数据处理使用。
2.CNC型控制系统
CNC型控制系统的测量进给是计算机控制的。它可以通过程序对测量机各轴的运动进行控制以及对测量机运行状态进行实时监测,从而实现自动测量。另外,它也可以通过 *** 纵杆进行手工测量。CNC型控制系统又可分为集中控制与分布控制两类。
(1)集中控制
集中控制由一个主CPU实现监测与坐标值的采样,完成主计算机命令的接收、解释与执行、状态信息及数据的回送与实时显示、控制命令的键盘输入及安全监测等任务。它的运动控制是由一个独立模块完成的,该模块是一个相对独立的计算机系统,完成单轴的伺服控制、三轴联动以及运动状态的监测。从功能上看,运动控制CPU既要完成数字调节器的运算,又要进行插补运算,运算量大,其实时性与测量进给速度取决于CPU的速度。
(2)分布式控制
分布式控制是指系统中使用多个CPU,每个CPU完成特定的控制,同时这些CPU协调工作,共同完成测量任务,因而速度快,提高了控制系统的实时性。另外,分布式控制的特点是多CPU并行处理,由于它是单元式的,故维修方便、便于扩充。如要增加一个转台只需在系统中再扩充一个单轴控制单元,并定义它在总线上的地址和增加相应的软件就可以了。
三、测量进给控制
手动型以外的坐标测量机是通过 *** 纵杆或CNC程序对伺服电机进行速度控制,以此来控制测头和测量工作台按设定的轨迹作相对运动,从而实现对工件的测量。三坐标测量机的测量进给与数控机床的加工进给基本相同,但其对运动精度、运动平稳性及响应速度的要求更高。三坐标测量机的运动控制包括单轴伺服控制和多轴联动控制。单轴伺服控制较为简单,各轴的运动控制由各自的单轴伺服控制器完成。但当要求测头在三维空间按预定的轨迹相对于工件运动时,则需要CPU控制三轴按一定的算法联动来实现测头的空间运动,这样的控制由上述单轴伺服控制及插补器共同完成。在三坐标测量机控制系统中,插补器由CPU程序控制来实现。根据设定的轨迹,CPU不断地向三轴伺服控制系统提供坐标轴的位置命令,单轴伺服控制系统则不断地跟踪,从而使测头一步一步地从起始点向终点运动。
四、控制系统的通信
控制系统的通信包括内通信和外通信。内通信是指主计算机与控制系统两者之间相互传送命令、参数、状态与数据等,这些是通过联接主计算机与控制系统的通信总线实现的。外通信则是指当CMM作为FMS系统或CIMS系统中的组成部分时,控制系统与其它设备间的通信。目前用于坐标测量机通信的主要有串行RS-232标准与并行IEEE-488标准。
第五节 三坐标测量机的软件系统
现代三坐标测量机都配备有计算机,由计算机来采集数据,通过运算输出所需的测量结果。其软件系统功能的强弱直接影响到测量机的功能。因此各坐标测量机生产厂家都非常重视软件系统的研究与开发,在这方面投入的人力和财力的比例在不断增加。下面对在三坐标测量机中使用的软件作简要介绍。
一、编程软件
为了使三坐标测量机能实现自动测量,需要事前编制好相应的测量程序。而这些测量程序的编制有以下几种方式。
(一)图示及窗口编程方式
图示及窗口编程是最简单的方式,它是通过图形菜单选择被测元素,建立坐标系,并通过“窗口”提示选择 *** 作过程及输入参数,编制测量程序。该方式仅适用于比较简单的单项几何元素测量的程序编制。
(二)自学习编程方式
这种编程方式是在CNC测量机上,由 *** 作者引导测量过程,并键入相应指令,直到完成测量,而由计算机自动记录下 *** 作者手动 *** 作的过程及相关信息,并自动生成相应的测量程序,若要重复测量同种零件,只需调用该测量程序,便可自动完成以前记录的全部测量过程。该方式适合于批量检测,也属于比较简单的编程方式。
(三)脱机编程
这种方式是采用三坐标测量机生产厂家提供的专用测量机语言在其它通用计算机上预先编制好测量程序,它与坐标测量机的开启无关。编制好程序后再到测量机上试运行,若发现错误则进行修改。其优点是能解决很复杂的测量工作,缺点是容易出错。
(四)自动编程
在计算机集成制造系统中,通常由CAD/CAM系统自动生成测量程序。三坐标测量机一方面读取由CAD系统生成的设计图纸数据文件,自动构造虚拟工件,另一方面接受由CAM加工出的实际工件,并根据虚拟工件自动生成测量路径,实现无人自动测量。这一过程中的测量程序是完全由系统自动生成的。
二、测量软件包
测量软件包可含有许多种类的数据处理程序,以满足各种工程需要。一般将三坐标测量机的测量软件包分为通用测量软件包和专用测量软件包。通用测量软件包主要是指针对点、线、面、圆、圆柱、圆锥、球等基本几何元素及其形位误差、相互关系进行测量的软件包。通常各三坐标测量机都配置有这类软件包。专用测量软件包是指坐标测量机生产厂家为了提高对一些特定测量对象进行测量的测量效率和测量精度而开发的各类测量软件包。如有不少三坐标测量机配备有针对齿轮、凸轮与凸轮轴、螺纹、曲线、曲面等常见零件和表面测量的专用测量软件包。在有的测量机中,还配备有测量汽车车身、发动机叶片等零件的专用测量软件包。
三、系统调试软件
用于调试测量机及其控制系统,一般具有以下软件。
(1)自检及故障分析软件包:用于检查系统故障并自动显示故障类别;
(2)误差补偿软件包:用于对三坐标测量机的几何误差进行检测,在三坐标测量机工作时,按检测结果对测量机误差进行修正;
(3)系统参数识别及控制参数优化软件包:用于CMM控制系统的总调试,并生成具有优化参数的用户运行文件;
(4)精度测试及验收测量软件包:用于按验收标准测量检具。
四、系统工作软件
测量软件系统必须配置一些属于协调和辅助性质的工作软件,其中有些是必备的,有些用于扩充功能。
(1)测头管理软件:用于测头校准、测头旋转控制等;
(2)数控运行软件:用于测头运动控制;
(3)系统监控软件:用于对系统进行监控(如监控电源、气源等);
(4)编译系统软件:用此程序编译,生成运行目标码;
(5)DMIS接口软件:用于翻译DMIS格式文件;
(6)数据文件管理软件:用于各类文件管理;
(7)联网通讯软件:用于与其他计算机实现双向或单向通讯。

智能油井多相流量计是一款非分离、无辐射、高实时性的计量装置,能够提供油、气、水、液多相的瞬时产量,累计产量和含水率、含气率、气液(油)比等关键指标数据。其技术水平和应用效果填补了国内该领域的空白,并且达到国际领先水平。该产品主要用于上游油气生产过程中井口油-气-水多相流原油产出物的各相流量在线计量,可以取代传统的分离式计量罐以及通过多通阀进行倒井的复杂计量流程,能够有效助力智慧油田油气生产物联网建设,并且适用陆地、海洋的单井、汇井等环境。

该产品采用多种多相流实时计量的核心技术,采用模块化设计,包含电学层析成像模块、实时在线微波组分测量模块、双差压文丘里流量测量模块以及多传感器高速数据采集模块,并且搭配油气生产大数据管理及分析系统,不但能够直观的掌握油气水产出规律,为生产决策提供实时和准确的量化数据,还能够促进油气田降本增效、工况诊断、精简地面工程、优化生产管理,为每一口井建立全生命周期的“个人”健康档案,实现向智能油气田的升级转型。

2017年起,“智慧工地”逐步进入政策视野,此前则多为建筑施工企业出于自身需求开展的创新应用。尤其在国务院办公厅《关于促进建筑业持续健康发展的意见》印发后,“智慧工地”的应用价值及现实意义渐成共识。

当前,针对“智慧工地”的顶层设计尚未明确,各地关于“智慧工地”的概念界定和路径设计也各有千秋。综合多地文件,可以将“智慧工地”理解为基于信息技术,围绕建筑工程项目全生命周期,建立支撑现场管理、互联协同、智能决策、数据共享的信息化系统,实现信息技术与现场管理深度融合的新型施工管控模式。

要而言之,“智慧工地”旨在为工程施工项目装上“智慧大脑”,通过采集、集成和应用建筑施工数据,实现对于施工现场的信息化监管。

1、信息采集:打破“信息孤岛”

施工现场散落着类别多、数量大的信息,涉及政府监管部门、建设、施工、监理、设计和材料供应商等诸多主体,需服务于质量、安全、成本、工期等控制需要。

为改变传统工地中信息重复采集、信息交叉上报、信息冗余严重、信息更新滞后的信息管理现状,“智慧工地”充分利用互联网、物联网、传感器等先进信息化技术手段,提高数据获取的准确性、及时性、真实性和完整性,致力于满足项目管理者对现场作业过程所需数据的及时获取、共享和沟通。

针对现场管理中较为突出的“信息孤岛”现象(表现为功能上不关联互助、信息不共享互换、信息与业务流程和应用相互脱节),“智慧工地”着力打破信息之间的互联互通障碍,构建横向到边、纵向到底的信息交互关系,既在“信息孤岛”间架设桥梁、实现大数据融合,也为破除“信息壁垒”、填平孤岛重建奠定基础。

响应《2016-2020年建筑业信息化发展纲要》针对施工类企业提出的“建立基于BIM的项目管理信息系统”号召,各地也要求逐步推进BIM技术,以降低信息在各环节传递过程中的衰减,实现信息的有效传递和共享。

2、系统集成:汇集多元力量

在优化信息采集的基础上,“智慧工地”还需将软件、硬件、技术和信息等集成到相互关联、统一协调的系统之中,使信息达到充分共享,在此基础上可以对施工现场的人、机、料、法、环等资源进行集中管理。

针对市场上施工现场管理信息系统多而杂的近况,“智慧工地”通过完善并集成项目管理、劳务管理、物资材料管理等系统,将施工现场所应用的各类小而精(杂)的专业化系统集成整合为各功能模块集成统一的系统平台。如《重庆市2020年“智慧工地”建设工作方案》明确智慧工地应具备人员实名制管理、危险性较大的分部分项工程安全管理、工程监理报告、工程质量验收管理、建材质量监管、工资专用账户管理6项元素,江苏省《关于推进智慧工地建设的指导意见》也明确智慧工地应涵盖现场应用、集成监管、决策分析、数据中心和行业监管等五个方面内容。

与此同时,“智慧工地”还有意提高BIM、LBS、VR、AR等技术应用软件和系统的集成程度,一方面提高信息技术集成应用能力,另一方面也有助于解决市场存在的软硬件集成难、系统选型难等问题。

3、数据应用:升级项目管理

信息的采集和系统的集成都是为了发挥大数据智能化对提升施工项目管理效能的价值。在前两步骤的基础上,“智慧工地”得以在数据应用环节发挥巨大潜能:“了解”工地的过去,“清楚”工地的现状,“预知”工地的未来。

对于各方建设主体而言,“智慧工地”有利于施工精细化管控的实现:通过集中获取、传递、处理、再生与利用项目信息,应用人员安全管理、施工进度监督、车辆未冲洗抓拍、现场设备监控等功能,能够提高施工现场决策能力和管理效率,助力项目管理“耳聪目明”,长远来看对于项目管理各方而言也是降低施工成本的创新选择。

对于监管部门而言,一方面可通过“智慧工地”优化对于施工项目的微观管理,如《成都市智慧工地线上巡查管理办法(试行)》要求各区(市)县住建行政主管部门(含质量、安全监督机构)负责所监管项目智慧工地线上巡查工作,督促相关责任单位及时整改和处理巡查问题;另一方面可应用“智慧工地”更好实现“现场与市场”联动管理,落实“现场优秀、市场优选”原则,在建筑企业中普及“以现场促市场、以市场保现场”观念,优化对于建筑市场的宏观管理。

“智慧工地”是建筑业信息化、智能化和精细化的有效载体,也是推进建筑产业现代化的重要环节,其应用能够提升行业监管和企业综合管理能力、驱动建筑企业智能化变革、引领项目全过程升级。当然,其推广还需以智能技术与智能设备的普及使用为出发点,政策支持、措施保障、督导监管加以辅助。

聚羧酸减水剂生产控制系统的工业物联网框架设计与实现

严海蓉1,王子明2
(1北京慧物科联科技有限公司,北京 100124,2北京工业大学,北京 100124)

摘要:工业物联网既提供了在生产过程中获取并控制聚羧酸减水剂生产设备的信息的方式,也提供了基本的网络架构,方便系统集成和扩展。该框架在分析了聚羧酸减水剂生产流程的基础上被划分为设备控制层、通讯层和应用服务层。根据实际应用需求,描述了工业物联网架构可以方便接入设备,贴近工艺完成软件,并让机器具有智能。企业应用案例表明该系统能够有效地实现生产状态跟踪监测和生产设备自动控制的目标,对进一步研究工业物联网技术和解决方案具有一定的参考价值。
关键词:工业物联网;自动化控制系统;聚羧酸减水剂生产设备
中图分类号:TP273 文献标识码:A

Theindustrial IOT design of automatic control system for polycarboxylate superplasticizer
YAN Hairong1, Wang Ziming2
(1.Beijing Sophtek Corp,2 Beijing University of Technology,Beijing 100124,China)

0引言
原来的聚羧酸减水剂生产自动化控制不能充分满足生产工艺要求,存在的主要问题是:
1) 新设备接入非常困难;
2) 同类不同厂家设备不方便更换;
3) 匀速滴加过程中不能达到理想的控制速度,传统PID算法波动较大,常需要人工手动干预;
4) 温度控制需要人工参与控制,无法完成全自动;
电话 扣扣53O934955
工业物联网是工业40的支撑框架。物联网被称为继计算机、互联网之后,世界信息产业的第三次浪潮。它的发展离不开应用,面向工业自动化的工业互联网技术是物联网的关键组成部分[1]。工业物联网通过将具有感知能力的智能终端、无处不在的移动计算模式、泛在的移动网络通信方式应用到工业生产的各个环节,提高制造效率,把握产品质量,降低成本,减少污染,从而将传统工业提升到智能工业的新阶段[2]。
工业物联网框架中,整个系统具有强大的数据服务器,能够进行大数据的计算。在数据量足够的时候能够利用网络智能来帮助企业进行决策、配方优化和自动的设备维护等。
整个控制系统具有分布式智能能力。整个系统中,可以把数据都送到中控部分来完成;也可以将一些需要及时处理的,如温度控制等,直接由现场控制来完成。系统通常分为中央控制单元和分布的现场控制单元,中央控制单元由工业控制计算机充当,现场控制单元则由高可靠、抗干扰的工业级微控制器和与当前控制需求相配套的附加电路模块组成。依托微控制器的实时处理能力可以完成对现场生产进行实时调节控制,并且通过总线实现现场控制单元与中央控制单元进行数据交互,使生产过程表现出整体性、协调性,从而优化生产工艺、提高生成效率。
系统通过总线把各个独立的控制模块组织成在一起。控制模块的独立性,使得系统中各个分布的控制模块检修、升级、数量扩充都很方便,也为在生产规模扩大时控制系统扩充预留了接口。
因此工业物联网框架才能彻底解决传统控制的一些问题,真正贴合聚羧酸减水剂生产工艺。
1 系统概要设计
根据聚羧酸减水剂的生产过程,可以将聚羧酸减水剂自动化控制系统分为设备控制层、通讯层和应用服务层,系统框架如图1所示。
图1 系统框架图
图1中,应用服务层主要实现对生产过程中实时数据和生产状态的跟踪监测和管理,同时提供各种应用UI接口,用户可以通过使用计算机、手机等手持设备登录客户端来访问或获取所需要的数据或信息等,从而实现物联网的厂内处处可访问。一旦将企业网络与公共网络连接,用户登录后就可以实现生产数据随处可访问。
应用服务层中还包括有控制逻辑层,控制逻辑层通过与 *** 作人员进行交互,并且汇集、分析、存储和处理生产过程中的实时数据和生产状态,实现生产过程的逻辑控制。
通讯层主要实现设备控制层、控制逻辑层和应用服务层之间的可靠传输。
设备控制层主要实现原始数据的采集与分析、数据和状态的上传、控制指令的接收等。嵌入式控制器内的智能逻辑将和聚羧酸减水剂生产各工序要求的生产工艺(加料、滴加、温度调节、pH调节)等紧密贴合,并与控制逻辑层相互通讯完成所要求的工艺精密控制。
整个系统采用划分层次的设计思路使得系统具有很好的可移植性,各种传感器可以灵活的接入系统。这样新系统的总体实现或者旧系统的扩展可以采用“搭积木”的方式完成构建。

2 系统详细设计
根据以上设计的系统工业物联网框架和体系结构,本研究将以北京某公司的具体项目为例,详细介绍该系统的设计和应用过程。
21设备接入示例
基于工业物联网架构的设计,可以很容易的接入各种设备。比如如图2所示的聚羧酸减水剂自动化控制系统接入了一个服务器、一个 *** 作员站、若干显示器、2个控制站,若干现场设备和用户手机。
图2基于工业物联网架构的设备接入实例
服务器负责存储生产数据,包括生产 *** 作日志和生产过程数据,便于生成台帐和报表。也可以与各种财务、资产管理软件连接。同时,负责承载起局域网与大网络的连接工作。
*** 作员站上运行的软件,方便 *** 作员在中控室来 *** 作现场各种阀门、电机等开停,从而按照工艺过程完成生产。
控制站自动获得 *** 作员 *** 作命令来控制现场设备,比如阀门等,同时也自动从现场设备获取各种状态,比如称重数据等传给控制室控制机器。
现场设备是包括传感器和各类执行器,比如秤、阀门等自动工作。
图中的手机设备是为了表示出工业物联网框架可以任意接入设备的特性。比如,在该框架下,巡视人员可以通过手机进行接入,完整现场紧急控制一些阀门的开或者是关。经理等就可以通过手机来查看每天生产数据。
同时,对于不同厂家的同类设备,该工业物联网框架也有较好的兼容能力。
22贴合工艺的软件设计
软件包括生产线管理软件和工业现场控制软件。生产线管理软件工作于生产管理计算机,主要实现工艺管理、配方管理;通过网络,根据权限,可调出 *** 作人员的现场 *** 作记录,完成对现场的远程管理。工业现场控制软件工作于车间级服务器中,主要通过与工艺以及现场布置相同的画面显示,使得 *** 作人员便于 *** 作,以实现现场设备仪表信号的采集、处理,配方管理和现场数据实时界面显示和控制等功能。
图3 聚羧酸合成控制生产工艺示意图

根据实际生产过程和自动化控制系统的特点,当前聚羧酸生产过程分大单体预化过程、 A、B料预混过程、A、B料计量罐加料过程、碱计量罐加料过程、A、B料滴加过程、反应釜搅拌控制过程、反应釜温度控制过程,针对不同的过程,分别实现其控制目标,从而达到完整生产过程的控制。
下面以工艺中的A、B料计量罐滴加控制为例来说明软件设计功能。
首先控制系统为用户提供友好的A、B滴加控制对话框,方便用户可视化 *** 作。用户可以选择采用以前输入的备用方案进行控制,也可以选择自己新输入方案进行空控制。总之都能够根据配方在规定的时间内,将指定质量的物料匀速加入到对应的反应釜中。
图4 启动已存备用方案滴加
图5 启动自定义方案采用三阶段定量滴加示例

其次控制系统采用分段式匀速滴加模式(图5),启动滴加时,控制系统计算出三个阶段分别的预期流速。控制系统实时读取当前计量罐的质量,并根据当前时间,计算出实时流速。控制系统根据实时流速和预期流速的差值,控制调节阀的开启度,从而控制滴加速度。
图6 滴加控制效果示意图(多阶段不同流速)

最后,显示出实时滴加工作界面(图6),工作工作误差一般不大于1%。
23机器学习的智能能力
原来控制系统由于没有采用物联网框架,数据存储量不充分,从而无法让机器自主学习。各种设备常常需要人来手工调整,设定最高最低值;控制过程需要人工进行干预,来辅助机器完成自动控制。
而现有的工业物联网架构,拥有了专门的数据服务器,从而可以存储较大量的数据。而对于这些数据进行分析而产生的机器智能不可小觑。
比如,以前温度控制时,只能根据人工经验设定一个固定的值。反应釜的材质、容量、夹套、搅拌电机、搅拌桨叶等设备本身因素会影响调温结果。
而往往由于冬夏的自来水、室内温度、物料温度、反应剧烈程度等也会影响调温结果。因此在控制系统安装后要进行长时间的人工参与测试来努力找到一个合适的最大最小值。而测试时间毕竟短,这个值一旦这个值固定后,后续生产时就无法轻易改变,为此生产 *** 作员常需要来观测这个温度控制过程并且来参与控制,否则很难达到理想的控制效果。
再比如对于滴加控制的PID算法,往往由设计者人为给定一个PID参数,也无法完全适应实际设备磨损等情况。
而基于工业物联网架构的控制时,可以在服务器端运行一个智能控件,由它来自动学习历史调温或者滴加流速的变化情况,不断训练软件,让软件重新找到合适的上下调节阈值,这样才可以真正达到完全自动化。整个系统拥有了自己不断学习的机器智能。

3 系统测试结果
基于工业物联网的聚羧酸减水剂自动化控制系统在设计和开发完成后,在北京某工厂的实际生产线上投入使用。目前,该系统运行安全、稳定,大部分功能已经实现,达到了预期的效果。
在系统正式投入使用后,对系统的工业现场控制软件、生产线管理软件和嵌入式控制器进行了长时间的测试。针对实现过程中遇到的问题做了大量的调试工作。下面以实现滴加A料为例对系统的测试进行描述。
*** 作人员在控制室通过点击用户 *** 作界面的A料滴加阀门按钮进行滴加参数的配置,如图7所示。 *** 作人员需要输入的参数为滴加质量和滴加时间,同时系统也支持分阶段滴加。在点击开始滴加按钮后,服务器会向嵌入式控制器发送滴加A料指令。
图7 滴加A料配置界面
嵌入式控制器在接收到服务器下发的滴加A料指令后,会进行自动化控制,实现A料的滴加 *** 作,具体效果如图8所示。
图8 5个反应釜同时进行A料滴加曲线示意图
图8中5条不同颜色的线分别表示5个不同计量罐的A料滴加曲线,系统支持多个计量罐同时进行滴加 *** 作。左侧上升的直线表示向计量罐加入A料的过程,系统支持多个计量罐同时加料,质量控制精确,定量加料的误差在01%以内。右侧下降的曲线表示滴加A料过程,曲线的斜率即为速度。由图可知,系统基本上能够实现匀速滴加A料过程,同时,系统也支持连续4小时的滴加 *** 作,时间误差在1分钟左右。
基于工业物联网的聚羧酸减水剂自动化控制系统投入运行后,提高了聚羧酸减水剂的产品质量,提高了工艺生产的自动化程度,大大减轻了 *** 作人员的劳动强度,提高了企业的竞争力。
4 结束语
本研究基于工业物联网架构设计的聚羧酸减水剂自动化控制系统对聚羧酸减水剂生产过程可以进行高效的跟踪管理,在实际应用中具有重要作用。它使聚羧酸减水剂生产设备具备了一定的数据感知、处理和通信能力,从而为企业制定更好的工艺流程提空帮助。同时,它也促使聚羧酸减水剂生产管理过程更加科学和精细化。该系统的成功开发设计为工业物联网在化工行业的推广打下了基础,做出了积极地探索。

参考文献:
[1]LIANG Wei,ZENGPeng Internet of Things Technology and Application Oriented IndustrialAutomation[J] Instrument Standardization & Metrology,2010:21-24[梁炜,曾鹏面向工业自动化的物联网技术与应用[J]仪器仪表标准化与计量,2010:21-24]
[2] KANGShilong,DU Zhongyi,LEIYongmei,ZHANG Jing Overview of industrial Internet of Things[J]Internet of Things Technologies,2013:80-82,85[康世龙,杜中一,雷咏梅,张璟工业物联网研究概述[J]物联网技术,2013:80-82,85]
[3] BIDongzhen The Design and Realization of Industrial Sewing Machines System Basedon the IoT[D]Shandong: Qingdao University,2012[毕东贞基于物联网的工业缝纫机系统的设计与实现[D]山东:青岛大学,2012]
[4]ZHANG Ximin,WANGGuoqing,DINGXuenian Development of an Internet home automation system[J] Chinese Journalof Scientific Instrument,2009,30(11):2423-2427[张喜民,王国庆,丁学年基于因特网的远程家居自动控制系统研制[J]仪器仪表学报,2009,30(11):2423-2427]
[5]WU Jiaqiang Tracking and quality monitoring system based on IOT industrial forsteel pipe[J] Journal of Mechanical &ElectricalEngineering,2013,30(11):1335-1339[伍家强基于工业物联网的钢管跟踪及质量监测系统[J]机电工程,2013,30(11):1335-1339]
[6]LI Nan,LIUMin,YANJunwei Frame work for industrial internet of things oriented to steel continuouscasting plant MRO[J] Computer Integrated Manufacturing Systems,2011,17(2):413-418[李楠,刘敏,严隽薇面向钢铁连铸设备维护维修的工业物联网框架[J]计算机集成制造系统,2011,17(2):413-418]

建议可以从以下几个方面考察:

1、安全性:要是智能充电桩,能够实现设备充满自动断电、过载保护、短路保护、漏电保护及露天防水等功能,出现故障及时预警。设备通过各项检测后上市,有专门的保险保证,单台设备单次事故,保险公司会赔付保额最高达500万,降低事故意外风险。

2、便民性:可以支持扫码和刷卡支付两种方式,既能满足移动支付的大趋势,又能保证年纪大的用户刷卡 *** 作;扫码后全程在手机上 *** 作,可以在手机上接收充电进度、远程续充、远程结束充电、充电端口是否被拔掉等情况;一台设备有12个端口,区别于传统设备的10个端口,节省安装成本,也可以缓解充电高峰; *** 作时有语音指导和按键,上到60多岁,下到10岁都会使用。

3、跨入门槛:启动资金就几万元,响应国家号召,市场前景广阔。

4、运营智能化:借助运营后台,可以做到在线查看站点、设备、订单情况,在线升级设备系统,节约人力物力财力,在线统一管理,可以有更多精力去开拓市场。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12631112.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存