物联网现状和发展前景

物联网现状和发展前景,第1张

处于市场验证期

物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等 信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换 和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网发 展历史悠久,可分为三个阶段:

物联网连接数超120亿个

根据全球移动通信系统协会(GSMA)统计数据显示,2010-2020年全球物联网设备数量高速增长,复合增长率达19%;2020年,全球物联网设备连接数量高达126亿个。“万物物联”成为全球网络未来发展的重要方向,据GSMA预测,2025年全球物联网设备(包括蜂窝及非蜂窝)联网数量将达到约246亿个。万物互联成为全球网络未来发展的重要方向。

下游制造业/工业占比最大

从下游领域来看,根据IoT Analytics的数据,2020年全球物联网行业下游占比中,制造业/工业占比22%排在首位,其次是交通/车联网,占比15%。智慧能源、智慧零售、智慧城市、智慧医疗和智能物流分别占比14%、12%、12%、9%和7%,排在第3至7位。

2020年物联网链接内容90%属低功耗、广域网领域

2020年整个物联网90%连接属于低功耗、广域网领域。万物互联趋势下,传统移动蜂窝网络的高使用成本和高功耗催生了专为物联网连接设计的低功耗广域连接技术,对应中低速率应用场景,拥有广覆盖、扩展性强等特征,更符合室外、大规模接入的物联网应用。

2026年市场规模接近155万亿美元

根据知名国际信息技术数据公司lDC的测算,2019年全球loT市场规模为6860亿美元,到2022年,这一数字将突破万亿美元;与此同时,2019年全球通过万物互联传输的数据规模已达到14ZB,2025年传输规模则将达到80ZB。在loT行业本身的从全球来看,目前全球物联网相关的技术、标准、产业、应用、服务处于高速发展阶段。整体上物联网核心技术持续发展,标准体系正在构建,产业体系处于建立和完善过程中。移动互联网连接和工业互联网连接是未来发展的主要趋势,根据lDC的测算数据,2020年全球物联网市场规模为7490亿美元,年平均增长率为1220%;预计2026年,全球物联网市场规模将会接近155万亿美元。

—— 以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》

今天小编要为大家讲讲网上卖的流量卡究竟可不可靠,一起来看看吧。
01
什么是物联网卡
由运营商(中国移动、中国联通 、中国电信)提供的4G/3G/2G卡。硬件和外观与普通SIM卡相似。加载针对智能硬件和物联网设备的专业化功能,采用专用号段和,满足智能硬件和物联网行业对设备联网的管理需求,以及集团公司连锁企业的移动信息化应用需求。
02
物联网卡满足了用户对低功耗/长待机、深覆盖、大容量等低速率的业务要求,;可应用于移动性较差的静态业务或非连续移动、实时传输数据等场景。
03
因为现在的我们的手机使用一些软件的时候都是需要流量的,于是现在的很多人都在网上买一些号称是流量卡的手机卡,这些卡据说是其中的流量十分之多并且便宜,但是可以看出从中的骗局。
04
调查显示这样的手机卡自然是不可靠的,网上购买的流量卡不可靠主要是因为这些手机卡大部分属于物联网卡,用于个人手机很容易被锁卡,并且售后得不到保障。
05
所谓的物联网卡就是三大运营商发给企业用户用于智能设备的联网,有独立的号段,没有月租,流量费也很便宜,外观和我们普通的手机卡是一样的,一般来件这些手机卡都是用在共享单车或是一些智能设备之上用来进行联网的,由于这些卡没有月租并且流量便宜,所以被一些人当做流量卡出售。
06
但是这些物联网卡的充值渠道并不是所对应的运行商,我们如果要进行卡片的充值、查询等均需要通过代理商,所以假如卖给我们这些卡片的代理商不见了的话我们的这张卡也就用不了了,所以说其实是很不安全的。
07
还有一个原因就是我们都知道现在的我们的手机卡都是实名制的,而将这些没有实名的物联网手机卡用于手机之中一旦被发现就被被锁卡然后就用不了了,所以很多人买了这种手机卡没用几个月就不能用了就是因为这个原因。
08
所以说购买这样的物联网卡作为手机流量卡的风险是十分之大的,因为这样的手机卡不但充钱和查询十分的麻烦并且还随时面临着被封号的风险,所以说还是不建议大家购买这样的手机卡,现在的无限流量套餐并不是很贵,建议大家还是到正规的营业厅之中办理自己所需要的流量套餐比较好。

一次电池物联网设备

许多小型IoT器件要求用一次电池长期工作。

因此,在为传感器、MCU、无线通信各功能供应超低消耗工作且高效电源的同时,电池控制、监视也变得重要。在此,将示例一种解决方案,其添加了一般且适合电池长期工作的电源配置及切断运输和不使用时的电源消耗的功能。

备注:关于锂一次电池
30V是二氧化锰型 / 36V是亚硫酰氯型

解决方案概要

关于升压IC

电路框图(a)是可将MCU直接连接到电池的情况。简单的IoT/安全/可穿戴/医疗的小型器件多为这种结构。

近年来,在18V~38V的大范围内工作的MCU越来越多,这种情况下,无需使用电源IC,即可直接连接到电池使用。对此,RF和传感器需要33V的固定电压,即使工作电压宽也为了要满足规格,大多需要一定电压以上的电压,即需要升压IC。RF和传感器不会一直工作,有时RF也会每天通信一次,而且是几秒钟。

此外,即使看起来像一直在工作,其实有很多情况是通过细致地ON/OFF控制降低消耗电流,使电池耐用。为实现上述工作,在需要时,MCU将对RF和传感器的工作进行ON/OFF控制。此外停止时,不仅会停止RF和传感器的功能,还会使升压IC及稳压器停止工作,可长时间使用电池。要抑制工作时的纹波,使其噪声频率恒定,PWM固定型适合。

如果轻载的工作状态存在,则使用PWM/PFM转换(自动切换工作模式)型。此外,要抑制EMI,并使其小型化,线圈一体型适合。升压 DC/DC

XCL102: PWM, 线圈一体型XCL103: PWM/PFM, 线圈一体型XC9141: PWM, 外置线圈XC9142: PWM/PFM, 外置线圈

关于LDO

为了使RF和传感器的电源噪声更低,有时会在升压IC的后级使用稳压器。具有高纹波抑制比/低噪声并且良好的负载瞬态响应特性的高速LDO最适合于消耗电流的陡峭变化的RF部位此外,传感器用途中100kHz以上的噪声重要的情况下,也有高频噪声低的低消耗型比高速型更适合的情况。稳压器

XC6233: 高速

XC6215: 低消耗


关于RESET IC

监视电池电压,电压下降时,向MCU发送信号。使用超低消耗型,抑制对电池的负担。

MCU的电源电压与正在监视的电压相同,所以可使用CMOS输出型。CMOS输出型无需上拉电阻,不会有流过上拉电阻的消耗电流。也减少零部件,N沟开漏产品在电池电压下降时输出“L”时,使用的上拉电阻的会有电流流过消耗电流会增加,会影响电池寿命。MCU中也有UVLO和A/D转换器等能监视电压的产品,作为低消耗电压监视和功能安全,MCU外部需要监视功能时,电压检测器很有用。电压检测器XC6136 C型: Iq~100nA (C型 : CMOS输出)

关于改善电池的耐久性的解决方案 / Push Button Load SW

电路框图(b)是一种通过添加Push Button负载开关,功能追加和大幅度改善电池的耐久性的解决方案。为了共享MCU控制和按钮控制需要开关引脚右侧的SBD和MCU的VDD的上拉电阻是需要的。

Push Button 负载开关XC6194: 1A SW内置XC6193: 支持外置Pch驱动大电流
本解决方案具有以下很大的优点。

1、防止从产品出货到开始使用的电池放电

被称为“Storage模式”、“Ship模式”。最适合不能拆卸电池的设备。此时的消耗电流几乎为0。通过按下按钮,即可开始使用。当然,可与此IC共享MCU控制用的按钮。

2、可用作主电源ON-OFF开关

可用按钮代替机械开关进行ON-OFF。例如,最适合防水设备。MCU可向SHDN引脚发送信号,并关闭Push Button负载开关。此外,我们还准备了可通过长按按钮关闭Push Button负载开关的类型。

3、解除死机

设备死机等异常时,可有效利用长按按钮的OFF功能。选择长达5秒或10秒的类型误 *** 作而关闭的可能性会降低,适用于死机对策。关闭后,再次按下按钮即可使之正常启动。并且Push Button负载开关作为对电池有益的功能,具有以下特点。

通过冲击电流防止功能,抑制启动时的冲击电流
启动完成后有PG引脚输出可起动使下一级电源IC和MCU工作。

12V UVLO功能让Push botton负载开关进入Shutdown状态,有防止电池漏液的效果。VOUT大幅下降时,通过输出短路保护功能进行Shutdown保护
如上所述,即使是以直接连接到电池工作的MCU为核心的简单的IoT器件,稍微花点功夫就可进一步改善电池的耐久性和容易满足小型高灵敏度要求。

Li-ion Polymer互联网设备


虽然是电池工作,但传感器和通信的频率高且功能复杂的IoT器件大多使用Li-ion/Polymer二次电池。对一次电池的充电控制和配合电源电压的超低消耗降压DCDC的追加是有代表性的电源解决方案。

解决方案概要

关于CHARGER IC

使用Li-ion/Polymer的IoT器件需要充电用电池充电IC和将电压降至MCU的电源电压范围内的降压DC/DC或稳压器。首先,我将说明电池充电IC的用法。充电电压(CV : Charge Voltage)和充电电流(CC : Charge Current)是基本选择。根据所需的充电电流,选择充电IC和电阻RISET。

电池充电ICXC6808: 5mA ~ 40mAXC6803: 40mA ~ 280mAXC6804: 200 mA ~ 800 mA

本电路框的Li-ion/Polymer电池是内置NTC,外置PCM(电池保护电路)的情况。无论内置/外置都需要PCM。关于NTC,如果没有内置在电池中,请注意放置场所并将其外置。如果不需要NTC,请通过电池充电IC指定的方法处理NTC连接引脚。这里显示充电状态的CSO引脚已用于向MCU发送充电情况。CSO引脚为N沟开漏输出,已通过电阻上拉到MCU的电源,以使信号的“H”电平与MCU的I/O电压范围相匹配。

如果用LED显示充电状态,则通过限制电流用电阻驱动LED,使该电源从VIN获得。这是为了避免用充电IC供应的充电电流驱动LED。VIN中放置了浪涌保护用TVS。因为是外部引脚,可能会有ESD等浪涌、及劣质USB适配器在无负载时也可能会产生相当高的电压,要用TVS和齐纳二极管采取对策。

此外,在充电的同时使用负载电流的情况、或一直供电5V,将Li-ion/Polymer电池用于备用时,可使用具有从VIN或电池两者输出提供适当电流的Current Path功能的高功能充电IC。带Current Path和Shutdown 电池充电ICXC6806

关于MCU专用降压DC/DC及LDO

Li-ion/Polymer电池高达CV = 42V或435V,一般来说,最大38V左右的MCU需要降压DC/DC或稳压器。在IoT设备中,MCU许多期间在Sleep状态下工作,因此IOUT从μA级(Sleep时)到100mA以上(工作峰值时)必须高效。通过将在超低消耗的同时搭载输出电压切换(VSET)功能的降压DC/DC用于此用途,可进一步改善电池的耐久性。如果使用输出电压切换功能,即使使用电流相同也能降低工作电压,可大大降低功耗。一般来说,MCU因内置的RF、模数和高速运算等,所以在工作时需要较高的电源电压,但可在Sleep时以最小电压工作。例如,Sleep时通过将VOUT从30V降至18V,可减少MCU的功耗,大幅改善电池的耐久性。降圧DC/DCXC9276: Iq = 200nA, 输出电压切换功能XCL210: 线圈一体型 Iq = 05μA (无输出电压切换功能)
如果要廉价配置解决方案,稳压器适合。
此外在可充电的应用程序中,即使是效率低下的稳压器,有时也会被判断没有问题而使用。稳压器XC6504: Iq = 06μA, 无需输出电容

关于RF/Sensor专用降压DC/DC及LDO

RF和传感器也因电池电压高而需要降压DC/DC和稳压器。

RF中重要的是低纹波且低EMI。此外,RF特别在发送时的电流变化陡峭,所以瞬态响应出色的HiSAT-COT控制适合。降圧DC/DCXC9281: PWM, 世界最小解决方案(352mm2)/低EMIXC9282: PWM/PFM, 世界最小解决方案(352mm2)/低EMIXCL221: 线圈一体型 PWM,12MHz/高效/低EMIXCL222: 线圈一体型 PWM/PFM,12MHz/高效/低EMI
仅在需要MCU时,设CE=“H”,工作降压DC/DC,向RF和传感器供应电压使之工作。停止时,不仅会停止RF和传感器的功能,也会停止降压DC/DC的工作,可使电池长时间使用。要抑制工作时的纹波,使其噪声频率恒定,PWM固定型适合。如果有轻载的工作状态,则使用PWM/PFM转换(自动切换工作模式)型。如果要使用稳压器,高纹波抑制/低噪声且像RF一样的消耗电流变化陡峭的负载瞬态响应出色的高速LDO最适合。此外,传感器用途中100kHz以上的噪声重要的情况下,会有高频噪声低的低消耗型比高速型更适合的情况。稳压器XC6233: 高速XC6215: 低消耗

关于RESET IC

使用超低消耗电压检测器可监视电池电压。MCU的电源电压与检测的电池电压不同,因此要使用N沟开漏型,通过电阻上拉到MCU的电源电压,并将信号传递给MCU。如果想降低检测后的上拉电阻消耗电流,将监测(VSEN)引脚从电源(VIN)引脚中分离,并使用CMOS输出型。通过从MCU的电源电压获得电源,可使用CMOS输出型。电压检测器XC6136 N型: Iq~100nA (N型 : N沟开漏输出)XC6135 C型: Iq~100nA,传感引脚分离型 (C型 : CMOS输出)

关于Push Button重启控制器


关于作为死机对策而附加的Push Button重启控制器。

Push Button重启控制器XC6190
Li-ion/Polymer的IoT设备一般不能拆卸电池,所以需要在死机等设备异常时进行复位并使之重新启动的功能。本例中有两个MCU控制用按钮,Push Button重启控制器与其共同使用。死机时,同时持续按下两个开关,规定的时间过去后,RSTB下降到“L”,可复位MCU。RSTB为N沟开漏输出,因此将上拉到MCU的电源电压。这里是向MCU发送了RESETB信号,另外也有例如控制驱动MCU电源的降压DC/DC的CE,通过长按RESET关闭DC/DC来强制重新启动的方法。如上所述,通过配置最合适功能的IC,可实现简单而工业设备所需的低噪声、长寿命的高性能IoT设备。

想购买元器件可以去唯样商城哦~~~

UART串口WiFi模块是近几年广泛应用于物联网领域的无线通信技术,因为WiFi的普遍性以及和手机的关联性等优点,让UART串口WiFi在智能单品领域异常火热,从智能家电到插座、温控器等等。而随着BLE蓝牙模块在智能家居的成功应用,越来越多的客户对UART串口WiFi模块提出了对小尺寸、低功耗的需求。

为满足物联网智能家居领域内越来越多客户提出的对UART串口WiFi模块小尺寸、低功耗,但功能强大的模组需求,SKYLAB WiFi软件、硬件研发团队研发推出了契合物联网应用需求的高集成度、小尺寸、超低功耗的UART串口WiFi模块——WG219。

WG219是一款基于ESP8266芯片的低功耗小(深度睡眠模式电流18uA)尺寸UART-WiFi透传模块,符合80211b/g/n无线模块标准,专为移动设备和物联网应用设计,可将用户的物理设备连接到WiFi无线网络上,进行互联网或局域网通信,实现联网功能。另外WG219仅需要通过出串口使用AT指令控制,就能满足大部分的网络功能需求。

WG219针对企业、智能电网、家庭自动化和控制客户端应用及特定情况下少数据发送和接收控制进行了优化。WG219 WiFi模块还支持拥有SW on-chip完整的应用程序的超低功率设备的快速程序开发应用。这使WG219在高集成、低功耗的自动化和传感器解决方案中是一个很好的选择。

基于高集成度WiFi模块WG219的智能插座方案

智能插座中内置UART WiFi模块(WG219),用户手机下载相关APP,通过路由器连接WiFi与智能插座中的WiFi模块建立连接,获得智能插座的控制权限,也可以通过云端来实现控制。

SKYLAB UART串口WiFi模块整体解决方案

SKYLAB不仅可以提供WiFi模块及其本身的软件支持,随着物联网的发展,云服务成了智能产品必不可少的一部分,云服务、云计算越来越流行。SKYLAB在这方面也积极部署,建立与云服务厂商的合作,推出系统解决方案,为客户提供包括室内控制中UART串口WiFi模块及整体WiFi应用方案等服务。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12671503.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存