植物的特点有哪些

植物的特点有哪些,第1张

举例来说:

1、仙人掌生活在沙漠中的仙人掌叶子退化成针状叶子,面团有一层蜡质。

目的是减少树叶蒸腾作用散发的水分,防止动物吃自己取水。仙人掌的茎变得粗壮多汁,表皮非常坚韧。它可以储存生存所必需的水,并有效阻止水的分布。

2、含羞草的叶子和叶柄具有特殊的结构。在复叶的叶柄和小叶基部,有一相对膨大的部分,称为叶枕。

植物

3、枕骨对刺激的反应最为敏感。一旦触到叶子,刺激立即传递到叶柄基部的枕头上,使两片小叶闭合,接触力更大。它不仅传播到叶柄基部的枕部,而且还传播到叶柄基部的枕部,整个叶柄下垂。

为什么?这是因为枕骨中央有一个大维管束,周围有许多细胞间隙的薄壁组织。当振动传递到叶枕上时,叶枕上半部薄壁组织细胞内的细胞液被排入细胞间隙,使上半部叶枕细胞的膨润度降低,而下半部的薄壁组织细胞间隙仍保持原来的膨润度,导致小叶竖立,两小叶闭合,甚至整叶。

有研究表明,含羞草的叶子在刺激后008秒内就会闭合。刺激后,传导速度也很快,最高可达每秒10厘米。

经过刺激,过了一小会儿,一切都慢慢恢复了正常,小叶再次张开,叶柄直立起来。恢复时间一般为5-10分钟。

盆栽

但是,如果我们继续一个接一个地挑逗刺激它的叶子,它就会感到“无聊”,不再反应。这是因为持续的刺激使枕部细胞内的细胞液流失,不能及时补充。

含羞草的这种特殊能力有一定的历史渊源。它的家乡是南美洲热带地区的巴西,那里经常有强风和大雨。

每当第一滴雨打在叶子上时,它就会立即关闭叶子并使叶柄下垂,以避免风暴的伤害。这是它对外部环境条件变化的适应。

此外,含羞草的运动也可以算是一种自卫方式。当动物碰到它时,它会关闭它的叶子,动物不敢再吃它。向日葵的这个特点是因为它的花盘下的茎含有一种奇妙的植物生长素。

一旦暴露在光线下,生长素就会转移到背光侧,刺激背光侧细胞的快速增殖。因此,逆光侧比亮侧生长得更快,导致向日葵的向光性弯曲。

含羞草

农业物联网应用功能主要有一下几个方面:

远程智能农业监控:通过在农业生产现场搭建“物联网” 监控网络,实现对农业生产现场气候环境,土壤状况,作物长势,病虫害情况的实时监测;并根据预设规则,对现场各种农业设施设备进行远程自动化控制,实现农业生产环节的海量数据采集与精准控制执行。

农产品标准化生产:通过自主研发或与第三方合作导入,为农作物品类逐步建立起“气候,土壤,农事,生理”四位一体的农业生产与评估模型,将农业生产从以人为中心的传统模式,变革为以数据为中心的现代模式,通过数据驱动农业生产标准化的真正落地,进而实现农产品定制化生产。

农产品安全追溯及防伪鉴真:通过采集农产品在生产、加工、仓储、物流等环节的相关数据,为农产品建立可视化产品档案,向消费者充分展示产品安全与品质相关信息,实现从农田到餐桌的双向可追溯。同时,通过一物一码技术,帮助农业生产和流通企业实现产品防伪鉴真,并精准获取客户分布数据。

物联网在农业领域的应用有精耕细作、农业无人机、智能温室等。

1、精耕细作

精准农业是在饲养牲畜和种植农作物时让耕种实践更加受控和准确。在这种农场管理方法中,关键是使用IT和各种项目,例如传感器、控制系统、机器人技术、自动驾驶车辆、自动化硬件、可变速率技术等。高速互联网、移动设备以及卫星(用于图像和定位)访问是精准农业的关键技术。

2、农业无人机

技术随着时间的推移而发生了变化,而农业无人机就是一个很好的例子。如今,农业已成为整合无人机的主要产业之一。地面和空中无人机可以帮助农业实现农作物健康评估、灌溉、监测、药物喷洒、种植以及土壤分析。

3、智能温室

温室种植是一种有助于提高蔬菜、水果、农作物等产量的方法。温室通过人工干预或比例调配机制来控制环境参数。由于人工干预会导致生产损失、能源损失和浪费成本,因此可以借助物联网来改造智能温室,实现智能监视和控制气候,从而无需人工干预。

为了控制智能温室中的环境,使用了根据工厂要求测量环境参数的不同传感器。我们可以创建一个云服务器,以在使用物联网连接系统时远程访问系统。

1提高农业资源的利用效率。物联网技术应用到农业物联网传感器中,可以帮助我们获取环境信息和土壤、墒情、水文等极为精细的农业资源信息,配合农业资源调度系统,就能让管理人员实现科学决策。
比如中景元物联云平台与某科技公司就智能农业监测项目合作,将物联网卡应用到农业生产中,通过对空气湿度、土壤湿度、光照度、二氧化碳浓度等信息进行采集分析,根据设定的阈值和条件实现自动调控、灌溉等智能 *** 作,还可自动监测预警。
2降低农业生产成本。一直以来农业生产成本居高不下是困扰农民的一大难题,而将物联网技术用于农业生产,不仅可以大大节约人力成本,也能减少化肥农药方面的成本。
物联网技术在农业生产的应用,让我们在家就可实时监控光照、温室温度情况,自动控制水帘降温、天窗开闭和风机运行等程序,不仅节约人力成本,而且农民朋友无需再到太阳底下暴晒了。
3提高农业产出,增加农民收入。我们都知道农业生产的土地是有限的,但是社会对农业资源的需求是不断增加的,我们需要在有限的土地上以最少的农业投入获得最大的农业生产价值,并且达到保护生态环境,增加农民收入的目的。

植物的特点有:

绿色植物大部分的能源是经由光合作用从太阳光中得到的,温度、湿度、光线是植物生存的基本需求。

种子植物共有六大器官:根、茎、叶、花、果实、种子。

绿色植物具有光合作用的能力——借助光能及叶绿素,在酶的催化作业下,利用水、无机盐和二氧化碳进行光合作用,释放氧气,产生葡萄糖等有机物,供植物体利用。

植物有明显的细胞壁和细胞核,其细胞壁由葡萄糖聚合物——纤维素构成。

关于植物的知识延展:

定义:

在自然界中,凡是有生命的机体,均属于生物。生物应分为几个界,把行固着生活和自养的生物称为植物界,简称植物。

植物有明显的细胞壁和细胞核,其细胞壁由葡萄糖聚合物——纤维素构成。植物具有光合作用的能力——就是说它可以借助光能及动物体内所不具备的叶绿素,利用水、矿物质和二氧化碳生产食物。释放氧气后,剩下葡萄糖——含有丰富能量的物质,作为植物细胞的组成部分。 亚里斯多德将生物区分成植物(通常是不移动的)和动物(时常会移动去获取食物)两种。在林奈系统里,则被分为了植 物界和动物界两界。后来,人们渐渐了解过原本定义的植物界中包含了数个不相关的类群,并将真菌和数种藻类移至新的界去。然而,对于植物仍然有许多种看法,不论是在专业上的,还是在一般大众的眼中来看。而也确实,若试图要完美地将“植物”放至单一个分类里是会发生问题的,因为对于大多数的人而言,“植物”这一词对现今分类学和系统分类学所立基的种系发生学的概念之间的关连性并不是很清楚,繁殖方法主要有压条、分株、扦插、嫁接、种子、孢子等。

分类:

生命的起源是由化学物质构成的DNA和原生浆液。植物伊始距今二十五亿年前(元古代),地球史上最早出现的植物属于菌类和藻类,其后藻类一度非常繁盛。直到四亿三千八百万年前(志留纪),绿藻摆脱了水域环境的束缚,首次登陆大地,

进化为裸蕨类植物和蕨类植物。为大地首次添上绿装。三亿六千万年前(石炭纪),裸蕨灭绝,蕨类植物衰落。代之而起是石松类、楔叶类、真蕨类和种子蕨类,形成沼泽森林。古生代盛产的主要植物于二亿四千八百万年前(三叠纪)几乎全部灭绝,而裸子植物开始兴起,进化出花粉管,并完全摆脱对水的依赖,形成茂密的森林。在距今1亿4千万年前白垩纪开始的时候,更新、更进步的被子植物就已经从某种裸子植物当中分化出来。进入新生代以后,由于地球环境由中生代的全球均一性热带、亚热带气候逐渐变成在中、高纬度地区四季分明的多样化气候,蕨类植物因适应性的欠缺进一步衰落,裸子植物也因适应性的局限而开始走上了下坡路。这时,被子植物在遗传、发育的许多过程中以及茎叶等结构上的进步性、尤其是它们在花这个繁殖器官上所表现出的巨大进步性发挥了作用,

使它们能够通过本身的遗传变异去适应那些变得严酷的环境条件反而发展得更快,分化出更多类型,到现代已经有了80多个目、200多个科。正是被子植物的花开花落,才把四季分明的新生代地球装点得分外美丽。

据估计,现存大约有350000个植物物种,被分类为种子植物、苔藓植物、蕨类植物和藻类植物。直至2004年,其中的287655个物种已被确认,有258650种开花植物、16000种苔藓植物、11000种蕨类植物和8000种绿藻。

生态作用:

陆生植物和藻类所行使的光合作用几乎是所有的生态系中能源及有机物质的最初来源。光合作用根本地改变了早期地球大气的组成,使得有21%的氧气。动物和大多数其他生物是好氧的,依靠氧气生存。植物在大多数的陆地生态系中属于生产者,形成食物链的基本。许多动物依靠着植物做为其居所、以及氧气和食物的提供者。

陆生植物是水循环和数种其他物质循环的关键。一些植物(如豆科植物等)和固氮菌共演化,使得植物成为氮循环重要的一部份。植物根部在土壤发育和防止水土流失上也扮演着很重要的角色。

(1)分布

植物分布在全世界水圈的大部,岩石圈的表面,大气层的底部,随着不同气候区而有不同的数量,其中有一些甚至生长在大陆棚极北端的冻土层上。在极南端的南极上,植物亦顽强地对抗其凛冽的环境。

植物通常是它们栖所上主要的物理及结构组成。许多地球上的生态圈即以植被的类型而命名,因为植物是此些生态圈中的主要生物,如草原和森林等等。它们通过遗传分化和表型可塑性来适应不同环境。

(2)生态关系

许多动物和植物共演化,例如:许多动物会帮助花授粉以交换其花蜜;

许多动物会在吃掉果实且排泄出种子时帮到植物散播其种子。适蚁植物是一种和蚂蚁共演化的植物。此类植物会提供蚂蚁居所,有时还有食物。做为交换,蚂蚁则会帮助植物防卫草食性动物,且有时还会帮助其和其他植物竞争。蚂蚁的废物还可以提供给植物做有机肥料。 大部份植物的根系会和不同的真菌有互利共生的关系,称之为菌根。真菌会帮助植物从土壤中获得水份和矿物质,而植物则会提供真菌从光合作用中组成的碳水化合物。一些植物会提供内生真菌居所,而真菌则会产生毒素以保护植物不被草食性动物食用。高羊茅中的Neotyphodium coenophialum即为一种内生真菌,其在美国的畜牧业造成了极严重的经济伤害。 许多种类型的寄生在植物中亦是很普遍的,从半寄生的槲寄生(只是从其寄主中得取一些养分,但依然留有光合作用的叶子)到全寄生的列当和齿鳞草(全部都经由和其他植物根部的连结来获取养分,所以没有叶绿素)。一些植物会寄生在菌根真菌上,称之为菌根异养,且因此会像是外寄生在其他植物上。 许多植物是附生植物,即长在其他植物(通常是树木)上,而没有寄生在其上头。附生植物可能被间接地伤害到其宿者,经由截取宿者本应得的矿物质和太阳光。大量附生植物的重量可能会折断树干。许多兰花、凤梨科植物、蕨类植物和苔藓通常会是附生植物。凤梨科的附生植物会在其叶腋和茎顶上累积水份而形成树上水池,一种复杂的水生食物链。 少部份植物是食虫植物,如捕蝇草和茅膏菜。它们捕捉及消化小动物以获取矿物质,尤其是氮。

一、什么是农业物联网?
No1:农业物联网是农业现代化的重要标志
农业物联网的实质是将物联网技术应用于农业生产经营,使其更具有信息化、智能化。农业物联网的实例化应用就是在感知端使用大量的传感设备(如农业环境信息的传感器、图像采集、RFID 等),广泛地采集农业生产、管理、经营等环境的各类信息(如大田种植、设施园艺、畜牧水产养殖、农产品溯源等领域),建立相对统一的数据传输协议与多源的数据格式转换办法,因地制宜交互使用无线传感器网、移动通信网和互联网等传输通道,实现农业信息多尺度、多源有效的传递。最后通过云计算、大数据等多重信息技术的深度融合与处理,通过智能化调控终端实现农业的闭环控制,实现农业的自动化、最优化控制。实际上,物联网是智慧农业的核心。
“农业物联网主要有感知、传输和控制三大作用,”中国农科院信息所所长许世卫解释,“农业物联网不仅能感知水、肥、热、气等外部环境变量,还能感知生物本体,比如对水稻叶片中的各种营养元素的感知。如果感知到水稻叶片中叶绿素含量降低,说明缺氮了,需要添加氮肥,而等到肉眼看到叶片发黄再追肥就晚了。”
No2:农业物联网架构模型
根据计算机网络架构模型的研究方法,国内外将农业物联网架构模型分为感知层、传输层(网络层)、处理与应用层三个层次。
感知层主要包括各类传感器、RFID、RS、GPS以及二维条形码等,采集各类农业相关信息(包括光、温度、湿度、水分、肥力、土壤墒情、土壤电导率、溶解氧、酸碱度和电导率等),实现对“物”的相关信息的识别和采集。传输层是在现有网络基础上,将感知层采集的各类农业相关信息通过有线或无线方式传输到应用层 ;同时,将应用层的控制命令传输到感知层,使感知层的相关设备采取相应动作,比如开关打开或者关闭、释放氧气、增加温度或者湿度以及设备重新定位等。
公共处理平台包括各类中间件以及公共核心处理技术,实现信息技术与行业的深度结合,完成物品信息的沟通、共享、决策、汇总等。
具体的应用服务系统是基于物联构架的农业生产架构模型的最高层,主要包括各类具体的农业生产过程系统,如大田种植系统、设施园艺系统、水产养殖系统、畜禽养殖系统、农产品物流系统等。通过这些系统的具体应用,保证产前正确规划以提高资源利用率,产中精细管理以提高资源利用率,产后高效流通实现安全溯源等多个方面,促进农业的高产、优质、高效、生态、安全。
(转自搜狐科技网)
二、农业物联网未来发展趋势
目前,我国农业正处于传统农业向现代农业转型期,农业物联网将发挥独特而重要的作用,也为现代农业的发展提供了前所未有的机遇。利用智能化信息管理技术发展现代农业已成为当今各个发达国家农业发展的热点之一。
农业物联网发展现状:2013年,农业部发布了《农业物联网区域试验工程工作方案》,方案中明确提出,实施区试工程,对于探索农业物联网理论研究、系统集成、重点领域、发展模式及推进路径,提高农业物联网理论及应用水平,促进农业生产方式转变、农民增收有重要意义。从深层次阐述了物联网技术能够提高农业生产效率,提升农产品附加值,实现农业增产与增收。
在发达国家,智慧农业已进入知识的处理、自动控制的开发以及网络技术的应用,渗透到农业各方面。 据介绍,国外采用物联网相关技术,在温室生产中大量采用无线传感器管理、调控温度湿度、营养液供给以及pH值(氢离子浓度指数)、EC值(可溶性盐含量)等,使设施蔬菜栽培条件达到最适宜水平。
借助物联网技术和云计算技术,在远程支持与服务平台上,建立智慧农业远程托管中心,实现远程栽培指导、远程故障诊断、远程信息监测、远程设备维护等;将植物生长信息和生物技术、食品安全技术相结合,从种植各个环节解决农产品的安全问题;充分利用先进的RFID、物联网、云计算等技术,实现农业生产监测管理和产品安全追溯。目前,这项技术不但达到国际先进水平,而且已推向全国市场,广泛应用于现代农业园区、大型农场、农业专业合作社等,深受用户的认可,取得了较好的成绩。
农业物联网,即在大棚控制系统中,运用物联网系统的温度传感器、湿度传感器、Ph值传感器、光传感器、CO2传感器等设备,检测环境中的温度、相对湿度、Ph值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使种植人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量获得作物生长的适宜条件,可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益。
种植业离不开浇水、施肥、打药,农民种地凭经验、靠感觉,他们面朝黄土背朝天的在田里耕作,并把这些经验与方法一代代相传,然而现在瓜果蔬菜该不该浇水,施肥、打药,怎样才能保持精确的浓度,温度、湿度、光照、CO2浓度,如何实行按需供给?这些以往在作物不同生长周期凭经验靠感觉“模糊”处理的问题,在农业物联网面前开始了实时定量的“精确”把关。物联网创造的“种地”模式的出现,已经成为打破传统农业弊端的一种新型农业模式。这种通过物联网技术开启的智慧风暴,让农业实现了“环境可测、生产可控、质量可溯”的目标。确保农产品质量安全,引领现代农业发展。
(转自搜狐网-鑫芯物联)
编辑于 2018-05-26 · 著作权归作者所有
赞同 1
评论

植物共有六大器官:根、茎、叶、花、果实、种子,茎是植物体中轴部分。直立或匍匐于水中,茎上生有分枝,分枝顶端具有分生细胞,进行顶端生长。

茎一般分化成短的节和长的节间两部分。茎具有输导营养物质和水分以及支持叶、花和果实在一定空间的作用,有的茎还具有光合作用、贮藏营养物质和繁殖的功能。

叶是维管植物营养器官之一,功能为进行光合作用合成有机物,并有蒸腾作用提供根系从外界吸收水和矿质营养的动力,花是具有繁殖功能的变态短枝。

扩展资料:

植物果实由花的雌蕊发育而来,多数植物的种子包裹在果实里面。草莓的“果实”由花托生长而来,是一个例外,一个果实内部的种子数量各不相同,有些只有一籽,有些则很多。

果实成熟时,有些富含水分,有些则变干,含水的果实通常颜色鲜艳,可以吸引动物将其吃掉,而将种子带到远方,当种籽排出体外,就会生根发芽。

有些豆科植物及其他类植物,在果实成熟后会爆裂开来,将种子射到附近,伺机发芽。有些果实重量很轻,当风吹过,会被风带到遥远的地方,完成他们传宗接代的任务。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12672307.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存