vr技术发展现状与未来趋势

vr技术发展现状与未来趋势,第1张

VR 技术的发展现状与未来趋势如下:

一、VR 技术的发展现状:

虚拟技术现已逐渐成熟,其应用方面也是多不胜数。例如:医学、游戏、军事航天、室内设计、房产开发、工业仿真、文物古迹等。

1、在医学方面,虚拟技术可以建立虚拟的人体模型,通过跟踪球、感觉手套等工具,学生可以更加清晰了解到人体内部各器官结构,既提高了教学质量也增加了课堂乐趣。

2、在游戏方面,三维游戏为虚拟技术的发展提供了巨大的牵引作用,并且也是虚拟现实技术重要的应用分向之一。通过三维游戏的实现,相比二维游戏,玩家能与游戏更加深入的融合,逼真感和沉浸感大幅度增强 ,例如索尼的 PlayStation。

二、VR 技术的未来趋势:

1、非游戏内容愈加丰富:

目前,VR内容主要被游戏占据。这种现象是暂时的。游戏不会一直是VR内容市场上的主流,随着技术的日益成熟,旅行、音乐会、内容等会逐渐地加入到战局中来。

2、更快的网络

VR 技术的发展对计算机处理速度与网络速度都提出了很高的要求,将会对互联网服务提供商、云存储服务提供商产生深远的影响。促使他们进行技术的革新与设备的升级换代。

3、更小的头显:

目前市场上的头显设备,对于重度使用还是有些笨重,设计上也显得有些怪异。更强处理速度的显卡和手机的到来,或许能够让 VR 头显变得比现在更小巧易用。随着技术的发展,VR 技术更能创造所需的全沉浸感。

4、教育与训练:

VR技术不仅能够让不同空间的人同时出现在一个虚拟的环境中,更重要的是,VR 提供的沉浸感,能够让教育、训练等项目更加逼真。

VR 技术的主要特征:

1、多感知性(Multi-Sensory):

所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术,特别是传感技术的限制,目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种。

2、浸没感(Immersion):

又称临场感或存在感,指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。

3、交互性(Interactivity):

指用户对模拟环境内物体的可 *** 作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。

4、构想性(Imagination):

又称为自主性——强调虚拟现实技术应具有广阔的可想像空间,可拓宽人类认知范围,不仅可再现真实存在的环境,也可以随意构想客观不存在的甚至是不可能发生的环境。

一般来说,一个完整的虚拟现实系统由虚拟环境、以高性能计算机为核心的虚拟环境处理器、以头盔显示器为核心的视觉系统、以语音识别、声音合成与声音定位为核心的听觉系统、以方位跟踪器、数据手套和数据衣为主体的身体方位姿态跟踪设备,以及味觉、嗅觉、触觉与力觉反馈系统等功能单元构成。

百度百科-虚拟现实技术

1、鼓励社会力量举办在线教育机构,支持互联网企业与在线教育机构充分挖掘新兴教育需求,满足多样化教育需求。
2、推动学校加大在线教育资源的研发和共享力度,加快线上线下教育融通,扩大优质教育资源的辐射面。
3、实施“教育大资源共享计划”,建设一批高质量在线课程,培育优质在线教育资源。四是鼓励职业院校、普通高校、科研院所、企业等密切合作,推进在线教育产学研用一体化发展。五是鼓励职业院校、普通高校结合社会需要和办学特色,加强相关专业建设和在线教育人才培养力度,积蓄发展动力。

法律依据:
《关于促进在线教育健康发展的指导意见》
第四项 满足多样化教育需求。鼓励社会力量举办在线教育机构,开发在线教育资源,提供优质教育服务。支持互联网企业与在线教育机构深度合作,综合运用大数据分析、云计算等手段,充分挖掘新兴教育需求,大力发展智能化、交互式在线教育模式,增强在线教育体验感。针对退役军人、新型职业农民、农民工等不同群体的教育需求,研发课程包、课件包和资源包,建设一批通识课程、五分钟课程、全媒体数字教材课程、“三农”特色课程等专项共建共享课程,提高教育供给精准度。(教育部负责)
第五项 推动线上线下教育融通。鼓励学校通过国家数字教育资源公共服务体系,加大在线教育资源研发和共享力度,扩大名校名师网络课堂等教学资源的辐射面。支持学校研究制定具体办法,将符合条件的在线课程纳入教育教学体系。高校应保证纳入高等学历教育的在线课程质量不低于本校原有的面授课程。深入推进“三通两平台”(即“宽带网络校校通、优质资源班班通、网络学习空间人人通”,教育资源公共服务平台、教育管理公共服务平台)建设,推动信息技术和智能技术融入教育教学全过程。优化结构,统筹利用现有资源,通过“网络学习空间人人通”专项培训,到2022年,培训10000名中小学校长、20000名中小学教师、3000名职业院校校长、6000名职业院校教师,实现信息化教与学应用覆盖全体师生。(教育部负责)
第六项 培育优质在线教育资源。实施“教育大资源共享计划”,汇聚互联网教学、科研、文化资源,拓展完善国家数字教育资源公共服务体系。建设一批高质量在线教育课程,探索学习成果认证和学分积累转换制度。优化结构,统筹利用现有资源,到2022年,推出3000门国家精品在线开放课程、1000个国家虚拟仿真实验教学项目,建设6000门左右国家级和10000门左右省级线上线下高等教育一流课程、10000堂基础教育示范课、1000堂职业教育示范课、200堂继续教育示范课。支持面向深度贫困地区开发英语、数学及音、体、美等在线教育资源,补齐教育基本公共服务短板。(教育部负责)
第七项 推进产学研用一体化发展。鼓励职业院校、普通高校、科研院所、企业等密切合作,深入实施产学合作协同育人项目,围绕在线教育打造资源共享、开放共建的创新联合体。鼓励在线教育企业在职业院校、普通高校建立研发机构和实验中心,促进科研与教学实现良性互动。加强智能教学助手、人工智能(AI)教师等新技术在教育领域的应用,推动教育模式变革。(教育部、工业和信息化部按职责分工负责)
第八项 加强在线教育人才培养。鼓励职业院校、普通高校结合社会需要和办学特色,加强人工智能、物联网、大数据、网络安全等相关专业建设,大力推进“互联网+”“智能+”教育教学改革,促进学科交叉融合,培养在线教育行业发展各类急需人才。鼓励企业与职业院校、普通高校搭建在线教育创新人才培养基地和供需对接平台,推动互联网与教育行业人才的双向流动,培训一批会技术、懂教育的高水平从业人员。
第九项 建立规范化准入体系。按照包容审慎原则,完善在线教育准入制度,明确准入条件与资质认证流程,建立健全在线教育资源的备案审查制度,切实维护国家安全、社会公共利益和师生个人信息安全。制定在线教育准入负面清单,允许各类主体依法平等进入未纳入负面清单管理的领域,对负面清单适时动态调整。按照国家有关规定,规范面向中小学生利用互联网技术实施的学科类校外线上培训活动。(教育部、中央网信办、工业和信息化部、市场监管总局按职责分工负责)
第十项 加强基础设施建设。抓住第五代移动通信技术(5G)商用契机,加快推动物联网、云计算、虚拟现实等技术在教育领域的规模化应用,提升教育服务数字化、网络化、智能化水平。实施“数字校园规范建设行动”,全面改善学校网络和接入条件,加快建设教育专网,到2022年实现所有学校接入快速稳定的互联网。鼓励社会力量参与在线教育基础设施建设和运营管理,提供专业化服务。(教育部、国家发展改革委、财政部、工业和信息化部按职责分工负责)
第十一项 落实财政支持政策。各地完善政府购买优质在线教育资源与服务的相关制度,将在线教育资源与服务纳入地方政府购买服务指导性目录。统筹利用现有资金渠道,加强在线教育平台建设与示范应用。(财政部、教育部按职责分工负责)
第十二项 拓展金融支持渠道。鼓励银行等金融机构开发符合在线教育特点的金融产品。利用创业投资基金、天使投资及资本市场融资等多种渠道,引导社会资本支持在线教育发展。支持符合条件的在线教育企业发行“双创”专项债务融资工具、创新创业公司债券。(中国人民银行、中国银保监会、中国证监会按职责分工负责)
第十三项 强知识产权保护。依托国家数字教育资源公共服务体系,完善在线教育知识产权服务机制,在知识产权创造、转化、交易、托管、权益维护等方面提供专业服务。依法严厉打击侵犯知识产权违法犯罪行为,推动形成公平竞争的市场秩序。(教育部、中央宣传部、国家知识产权局、市场监管总局、公安部按职责分工负责)
第十四项 保护消费者权益。加强教育与互联网等相关领域各项法律制度衔接,完善在线教育机构的备案、选用、监督、检查、通报、退出等全周期制度体系。推动在线教育机构按照公开、公平、公正原则,建立质量标准,明确服务规则。畅通在线教育消费投诉渠道,完善投诉响应、纠纷处理和多方调节机制。加大在线教育机构信息强制公开力度,充分发挥社会公众、新闻媒体、消费者协会、行业协会的外部监督作用,实现共治共管。(教育部、市场监管总局按职责分工负责)
第十五项 创新管理服务方式。利用现代信息技术手段推动对在线教育机构的大数据比对分析,通过信息监测、在线识别、源头追溯等方式,识别行业风险和违法违规线索,实现以网管网。强化对在线教育机构的实时监测和风险预警,建立在线教育机构和从业人员信用记录,完善身份认证、双向评价、信用管理机制,维护良好教育秩序。(教育部、中央网信办、工业和信息化部、公安部、国家发展改革委、中国人民银行按职责分工负责)
第十六项 加强部门协同监管。适应在线教育跨领域、跨区域的特点,加强监管部门协同和区域协同,充分发挥民办教育工作、职业教育工作、“互联网+”行动、网络市场监管、消费者权益保护等部际联席会议机制作用,提高监管效能。借助全国一体化在线政务服务平台、国家数据共享交换平台、全国信用信息共享平台、国家企业信用信息公示系统,加大对在线教育机构基本信息和各类许可信息的归集力度,加强部门间数据共享,形成管理合力。(相关部门按职责分工负责)
第十七项 强化行业自律。支持在线教育行业组织建设,在机构自治、行业自律、交流合作、协同创新、履行社会责任方面发挥桥梁和纽带作用。鼓励行业协会等第三方机构根据在线教育行业特点,制定行业公约,开展在线教育机构服务质量认证和从业人员能力认证。鼓励行业协会加强政策宣传,积极推广在线教育的优秀经验和成功案例,引导行业健康有序发展。(相关部门按职责分工负责)

2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。

截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。

目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》

当前的互联网只限于信息共享,网络则被认为是互联网发展的第三阶段。网络可以构造地区性的网络、企事业内部网络、局域网网络,甚至家庭网络和个人网络。网络的根本特征并不一定是它的规模,而是资源共享,消除资源孤岛。 网络技术具有很大的应用潜力,能同时调动数百万台计算机完成某一个计算任务,能汇集数千科学家之力共同完成同一项科学试验,还可以让分布在各地的人们在虚拟环境中实现面对面交流。 发展历程 网络研究起源于过去十年美国政府资助的高性能计算科研项目。这项研究的目标是将跨地域的多台高性能计算机、大型数据库、大型的科研设备、通信设备、可视化设备和各种传感器等整合成一个巨大的超级计算机系统,以支持科学计算和科学研究。 微软公司把开发力量集中在数据网络上,关注使用网络共享信息,而不是网络的计算能力,这反映了学术和研究领域内的分歧。事实上,很多用于学术领域的网络技术都能够成为商业应用。 Argonne Globus是美国阿贡(Argonne)国家实验室的网络技术研发项目,全美12所大学和研究机构参与了该项目。Globus对资源管理、安全、信息服务及数据管理等网络计算的关键理论进行研究,开发能在各种平台上运行的网络计算工具软件,帮助规划和组建大型的网络试验平台,开发适合大型网络系统运行的大型应用程序。 目前,Globus技术已在美国航天局网络、欧洲数据网络、美国国家技术网络等8个项目中得到应用。2005年8月,美国国际商用机器公司(IBM)宣布投入数十亿美元研发网络计算,与Globus合作开发开放的网络计算标准,并宣称网络的价值不仅仅限于科学计算,商业应用也有很好的前景。网络计算和Globus从开始幕后走到前台,受到前所未有的关注。 中国非常重视发展网络技术,由863计划“高性能计算机及其核心软件”重大专项支持建设的中国国家网络项目在高性能计算机、网络软件、网络环境和应用等方面取得了创新性成果。具有18万亿次聚合计算能力、支持网络研究和网络应用的网络试验床——中国国家网络,已于2005年12月21日正式开通运行。这意味着通过网络技术,中国已能有效整合全国范围内大型计算机的计算资源,形成一个强大的计算平台,帮助科研单位和科技工作者等实现计算资源共享、数据共享和协同合作。 关键技术 网络的关键技术有网络结点、宽带网络系统、资源管理和任务调度工具、应用层的可视化工具。网络结点是网络计算资源的提供者,包括高端服务器、集群系统、MPP系统大型存储设备、数据库等。宽带网络系统是在网络计算环境中,提供高性能通信的必要手段。资源管理和任务调度工具用来解决资源的描述、组织和管理等关键问题。任务调度工具根据当前系统的负载情况,对系统内的任务进行动态调度,提高系统的运行效率。网络计算主要是科学计算,它往往伴随着海量数据。如果把计算结果转换成直观的图形信息,就能帮助研究人员摆脱理解数据的困难。这需要开发能在网络计算中传输和读取,并提供友好用户界面的可视化工具。 研究现状 网络计算通常着眼于大型应用项目,按照Globus技术,大型应用项目应由许多组织协同完成,它们形成一个“虚拟组织”,各组织拥有的计算资源在虚拟组织里共享,协同完成项目。对于共享而言,有价值的不是设备本身而是实体的接口或界面。 从技术角度看,共享是资源或实体间的互 *** 作。Globus技术设定,网络环境下的互 *** 作意味着需要开发一套通用协议,用于描述消息的格式和消息交换的规则。在协议之上则需要开发一系列服务,这与建立在TCP/IP(传输控制协议/网际协议)上的万维网服务原理相同。在服务中先定义应用编程接口,基于这些接口再构建软件开发工具。 Globus网络计算协议建立在网际协议之上,以网际协议中的通信、路由、名字解析等功能为基础。Globus协议分为构造层、连接层、资源层、汇集层和应用层五层。每层都有各自的服务、应用编程接口和软件开发工具、上层协议调用下层协议的服务。网络内的全局应用都需通过协议提供的服务调用 *** 作系统。 构造层功能是向上提供网络中可供共享的资源,是物理或逻辑实体。常用的共享资源包括处理能力、存储系统、目录、网络资源、分布式文件系统、分布式计算机池、计算机集群等。连接层是网络中网络事务处理通信与授权控制的核心协议。构造层提交的各资源间的数据交换都在这一层控制下实现的。各资源间的授权验证、安全控制也在此实现。资源层的作用是对单个资源实施控制,与可用资源进行安全握手、对资源做初始化、监测资源运行状况、统计与付费有关的资源使用数据。 汇集层的作用是将资源层提交的受控资源汇集在一起,供虚拟组织的应用程序共享、调用。为了对来自应用的共享进行管理和控制,汇集层提供目录服务、资源分配、日程安排、资源代理、资源监测诊断、网络启动、负荷控制、账户管理等多种功能。应用层是网络上用户的应用程序,它先通过各层的应用编程接口调用相应的服务,再通过服务调用网络上的资源来完成任务。应用程序的开发涉及大量库函数。为便于网络应用程序的开发,需要构建支持网络计算的库函数。 目前,Globus体系结构已为一些大型网络所采用。研究人员已经在天气预报、高能物理实验、航空器研究等领域开发了一些基于Globus网络计算的应用程序。虽然这些应用仍属试验性质,但它证明了网络计算可以完成不少超级计算机难以胜任的大型应用任务。可以预见,网络技术将很快掀起下一波互联网浪潮。面对即将到来的第三代互联网应用,很多发达国家都投入了大量研究资金,希望能抓住机遇,掌握未来的命运。 中国也加强了网络方面的投入。中科院计算所为自己的网络起名为“织女星网络”(Vega Grid),目标是具有大规模数据处理、高性能计算、资源共享和提高资源利用率的能力。与国内外其他网络研究项目相比,织女星网络的最大特点是“服务网络”。中国许多行业,如能源、交通、气象、水利、农林、教育、环保等对高性能计算网络即信息网络的需求非常巨大。预计在最近两三年内,就能看到更多的网络技术应用实例。 应用领域 网络技术的应用领域很广,主要有以下几方面。 分布式超级计算 分布式超级计算将分布在不同地点的超级计算机用高速网络连接起来,并用网络中间件软件“粘合”起来,形成比单台超级计算机强大得多的计算平台。 分布式仪器系统 分布式仪器系统使用网络管理分布在各地的贵重仪器系统,提供远程访问仪器设备的手段,提高仪器的利用率,方便用户的使用。 数据密集型计算并行计算技术往往是由一些计算密集型应用推动的,特别是一些带有巨大挑战性质的应用,大大促进了对高性能并行体系结构、编程环境、大规模可视化等领域的研究。数据密集型计算的应用比计算密集型的应用多得多,它对应的数据网络更侧重于数据的存储、传输和处理,计算网络则更侧重于计算能力的提高。在这个领域独占鳌头的项目是欧洲核子中心开展的数据网络(DataGrid)项目,其目标是处理2005年建成的大型强子对撞机源源不断产生的PB/s量级实验数据。 远程沉浸 这是一种特殊的网络化虚拟现实环境。它是对现实或历史的逼真反映,对高性能计算结果或数据库可视化。“沉浸”是指人可以完全融入其中:各地的参与者通过网络聚集在同一个虚拟空间里,既可以随意漫游,又可以相互沟通,还可以与虚拟环境交互,使之发生改变。目前,已经开发出几十个远程沉浸应用,包括虚拟历史博物馆、协同学习环境等。远程沉浸可以广泛应用于交互式科学可视化、教育、训练、艺术、娱乐、工业设计、信息可视化等许多领域。 信息集成 网络最初是以集成异构计算平台的身份出现,接着进入分布式海量数据处理领域。信息网络通过统一的信息交换架构和大量的中间件,向用户提供“信息随手可得”式的服务。网络信息集成将更多应用在商业上,分布在世界各地的应用程序和各种信息通过网络能进行无缝融合和沟通,从而形成崭新的商业机会。 信息集成如信息网络、服务网络、知识网络等,是近几年网络流行起来的应用方向。2002年,Globus联盟和IBM在全球网络论坛上发布了开放性网络服务架构及其详细规范,把Globus标准与支持商用的万维网服务标准结合起来。2004年,Globus联盟、IBM和惠普(HP)等又联合发布了新的网络标准草案,把开放性网络服务架构详细规范I转换成6个用于扩展万维网服务的规范,网络服务已与万维网服务彻底融为一体,标志着网络商用化时代的来临。 网络技术的发展,标准是关键。就像TCP/IP协议是因特网的核心一样,构建网络计算也需要对核心——标准协议和服务进行定义。目前,一些标准化团体正在积极行动。迄今为止,网络计算虽还没有正式的标准,但在核心技术上,相关机构与企业已达成一致,由美国阿贡国家实验室与南加州大学信息科学学院合作开发的Globus 计算工具软件已成为网络计算实际的标准,已有12家著名计算机和软件厂商宣布将采用Globus 计算工具软件。作为一种开放架构和开放标准基础设施,Globus 计算工具软件提供了构建网络应用所需的很多基本服务,如安全、资源发现、资源管理、数据访问等。目前所有重大的网络项目都是基于Globus 计算工具软件提供的协议与服务的。 除了标准以外,安全和可管理性、人才的缺乏也是网络计算亟待解决的一个问题,否则它将无法成为企业的商业架构。在真正实现商业应用之前,还需要解决许多问题。即便如此,构建全球网络的前景仍是无法抗拒的。 主要功能 一般来说,计算机网络可以提供以下一些主要功能: 资源共享 网络的出现使资源共享变得很简单,交流的双方可以跨越时空的障碍,随时随地传递信息。 信息传输与集中处理 数据是通过网络传递到服务器中,由服务器集中处理后再回送到终端。 负载均衡与分布处理 负载均衡同样是网络的一大特长。举个典型的例子:一个大型ICP(Internet内容提供商)为了支持更多的用户访问他的网站,在全世界多个地方放置了相同内容的>科学术语是在科学上的专用语言,有特定的意义,和生活语言有时略有不同。
科学术语对科学技术概念进行了规范,并赋予其明确定义,以便于科学技术的研发和推广。常见的科学术语如:认知计算、量子计算、DT时代、计算机视觉、计算机编程、人工智能、深度学习、人脸识别、物联网、虚拟现实等等。科学术语顾名思义,是科学类的专业术语和名词。
它主要有两层意思:第一,科学有若干种解释,每一种解释都反映出科学某一方面的本质特征,而且科学本身也在发展,人们对它的认识不断深化,给科学下一个永恒不变的定义是难以做到的。我们把众多的科学定义解释加以概括,指出为多数人可以接受的共同概念,那就是科学知识、科学研究活动、科学社会建制的统一体。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12685326.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存