智能变电站的重点技术

智能变电站的重点技术,第1张

1、智能变电站中分布式电源的引用
智能变电站将分布式电源引入进来,能够增强智能电网的安全灵活性,在运行效率上也有显著的提升,此外,在配电系统中也改变了单项潮流网络的存在,使其从单向电源辐射的网络转变成为一个多源型的网络。原来的变电站内的保护措施和保护行为的出现都是针对单项潮流网络的,现在单项潮流网络转变为多元型网络将会使以前的保护行为和保护措施变得不再安全可靠。根据这种转变,接入分布式电源后对智能变电站继电保护的作用提出更大的挑战。
2、 智能变电站中硬件的集成技术
随着智能电网的不断发展和进步,电网硬件系统中开始有了描述语言的硬件,描述语言的硬件的出现使智能变电站在设计应用上有了集成、自动以及模型化的特点。以上特点使得硬件系统中出现了功能全面的模块化的规划,能够将一些不同的逻辑问题固化到智能变电站内部的设备上,由软件的控制到达硬件的应用。从而确保了设计应用的准确、可靠,同时也解决了信息传送中的关键问题。
3、智能变电站中软件的构件技术
智能变电中的软件技术和硬件技术相辅相成,两者形成完美的协作。软件系统是保证智能变电站正常运行的灵魂和钥匙,其不但能够实现信息控制和监控功能,还可以将相量测量单元(PMU)、录波等功能进行集成 ,这就完成了变电站内部的区域疾控、在线状态监督、远程 *** 作等高级功能。对于保证日益庞大和复杂的电力系统安全稳定运行,提高自动化程度具有深远意义。

智能变电站的网络通信结构设计需要充分考虑到网络的实时性、可靠性、经济性与可扩展性。网络的通信结构设计应具有网络风暴抑制功能,支持变电站内设备的灵活配置,减少交换机数量,简化网络的拓扑结构,降低变电站的建造和运行成本。另外,在智能变电站的设计中,还应对网络内的信息流量进行计算和控制,设立最大节点数和最大信息流量,并必须保持系统冗余。 智能变电站自动化系统通常采用的网络结构有总线型、环型或星型等(见图5-3),也可以将不同的网络结构进行混合,实现网络冗余,保证网络的可靠性。在智能变电站的网络系统中,站控层网络可采用总线型、星型或环型网络结构,而过程层网络可采用双星型及环型结构。随着智能变电站网络系统的发展,还可以将站控层和过程层的网络合二为一,采用单一总线结构。

摘 要:随着社会主义市场经济的发展,对电力的需求也在不断增大,在进行电力环境严格监管与国家能源综合调控的前提下,电力网络与电力市场和用户们的关系已经更加密切。为了可以源源不断的为用户和国家输送电力,而且使电力的输送更快捷,高效和稳定,就需要进行智能变电站的建设。本文中,笔者将就智能变电站的一些关键技术进行简要阐述。
关键词:智能 变电站发展 关键技术
中图分类号:TM62 文献标识码:A 文章编号:1672-3791(2012)06(c)-0120-01
智能变电站的建设,是依靠先进的,集成的,可靠的与环保的智能设备进行电力配送,并且以全站内的通信平台网络化,信息数字化,和信息共享化为设计的基本要求,对信息的采集工作,测量工作,控制工作,保护工作,计量与检测工作进行独立完成,还能根据用户需求,来进行实时的自动控制与调节。这样就大大减少了普通变电站常常出现的事故的发生,也使得电力的配送变得智能化。
1 硬件系统集成技术
传统的变电站中,对信息的采集与处理需要借助中央处理器和外围的芯片或者设备来进行共同工作。中央处理器的作用是可以实现一些高级的应用功能,比如说大量数据的计算和逻辑的分析过程,所以中央处理器的性能如何,将会对实现各种功能产生制约,会直接的影响到其速度与质量问题。通常使用的是DSP,ARM或者是CPU这样的中央处理器,不过这种设计存在着自身的缺陷,一是智能变电站对实时信息量需求增大,只能集成较少资源的处理器无法满足智能变电站本身的处理需要,因而限制智能变电站的技术发展。二是处理器集成的无法满足智能变电站的需求的其他硬件资源被闲置下来,使得资源被浪费。三是对于删减嵌入式 *** 作系统的工作十分繁琐,而复杂的系统自身也造成了系统测试中错误率的上升和难度的加大。伴随现代的电子科学的发展,出现了对硬件的描述语言,这就使硬件系统在设计中变得模型化,自动化和集成化,更有助于去针对功能进行模块化设计,可以把一些固定的逻辑处理的过程,在智能设备的内部进行固化,使原来的一些依靠软件来实现的功能转变为依靠硬件实现。这种设计,可以在保证逻辑处理的实时性,准确性与可靠性的同时,对硬件资源的开销进行精简,而且可以解决信息传输的问题,并提高设备的集成度。除此之外,硬件的集成技术还便于对智能设备进行检修,更换和进行升级。所以在智能变电站使用硬件系统的集成技术,会打破传统设备的设计理念,会改变变电站中硬件设备的格局布置,为变电站的智能化做好基础。
2 软件构件技术
智能变电站中使用的软件系统,不单单可以实现传统的信息管理与信息监控,还能将PMU与录波功能进行集成处理,以此实现估计站内状态,进行区域集控,远程维护和评估电能质量等智能化的高级管理,还会参照工程配置的文件,来生成系统工程的数据,实现智能变电站系统与设备系统模型的自动重构。而这样的软件系统,是需要软件的构件技术才可以实现的。具有一定功能的程序体,可以独立工作或者与其他构件装配起来进行协调工作就是软件构件。软件构件技术的实质,就是为了完成一个或者是多个功能的特定服务,在不同粒度上对一组代码或者类等进行组合与封装,进而提供接口给用户。构件技术把系统的抽象程度提高到了一个比面向对象技术更高的层次,分而治之就是构件技术的中心思想。其中,构建技术手段之一的复用技术,需要工作人员在实践中不断去探索创新。软件构件技术,在软件系统实现灵活、d性以及实时起到关键作用,嵌入式系统软件通过此技术实现功能集成的手段。
3 信息管理存储技术
高级局域网可以进行自动恢复,智能变电站用它来建设数字化信息平台,而这个可以恢复自愈性故障的信息平台,提供给信息采集服务给智能变电站。而且它体现了集中管理信息的设计思想,还为进行信息模型的转换,集成,调用和冗余等诸多功能提供基础,并为电力下放提供信息与技术的支持。以太网已经无法满足智能变电站的需求,所以进行信息的优先级传输和信息的就地存储就显得更加重要。信息的优先级传输可以保证一些重要信息可以及时准确的传输,而一些非关键的信息,就进行就地存储。这样可以减少网络传输的负荷,并为系统决策提供数据。该项技术可以将变电站底层的硬件与网络设备构建成一个共享的资源库,对那些就地存储的信息,可以随时调用。而其本质就是将信息按照不同的粒度进行细化,来实现信息分层分布与调用,而且随着智能电网的发展,进行信息安全防护也是需要我们考虑的,而该技术正好可以弥补这些不足,它可以对信息进行评估分析,按照安全等级的不同,设计相应的防护策略,在最大限度上,对各级电网的信息提供安全保障。
4 分布式电源保护控制技术
使用分布式电源,可以提高智能电网的效率性,安全性与灵活性,并改变传统配电中单向潮流的特性,而将其变成一个多源网络。分布式电源作为一个整体模块,可以进行孤网运行,还可以并网运行。需要我们对其接入系统时对电网频率,无功以及电压稳定的影响进行关注。分布式电源保护控制系统与传统的保护策略不同,它主要是针对分布式电源双向潮流流通,电源内部电力电子设备引入的特点,通过阻抗前馈与负荷模型反馈等计算方法,来制定保护策略。其中包括了全线速动保护,低压保护,反弧岛,高频切机与低频减载等特殊的保护功能。而控制策略主要是针对并网之后的控制,采用自动同期控制和重合闸控制相互配合的控制策略。
5 信息标准融合技术
智能变电站中通过复杂的信息采集渠道,具有大量不同种类的信息。每一个智能电网设计一套自己的信息采集理念,运用不同的算法及模型,采集各种不同的信息,是一台电网无法利用别的电网的信息。因此为了实现和智能电网的无缝通信连接,对智能变电站内各种信息模型进行相互转换与映射就不可避免了,于是就需要使用信息标准的融合技术,而该项技术的基础是信息模型的规范化,标准化和体系化。对于实现信息模型的规范化与标准化,第一要设立开放的通信架构,使各个元件之间的信息可以通过网络来进行通信,也就是信息网络化;第二更深入的细化处理信息模型,制定模型夸大击垮的原则的标准;第三,制定技术的唯一标准,形成一个具有多功能的规约库,来实现各个应用系统之间的无缝通信。目前,IEC61850是全面规范智能化变电站中自动化体系的国际电工委员会最新实施的标准,也是只能变电站内部的统一规约。
智能变电站作为智能电网中重要的部分,需要在发展中将先进的电力电子技术,计算机技术与控制技术进行相互融合,来实现智能变电站易扩展升级,易改造维护的应用需求。
参考文献
[1] 秦建伟智能变电站的关键设备和技术[J]装备机械,2010(3)
[2] 李孟超,王允平,李献伟,等智能变电站及技术特点分析[J]电力系统保护与控制,2010(18)

中图分类号:TM41 文献标识码:A随着我国电力工业的迅速发展,各大电力系统的容量和电网区域不断扩大。电力系统在运行过程中,会因为各种各样的原因而出现事故,从而可能导致电力系统的运行暂时中断,也可能引发更大的电力事故。所以在变电站中,人们采用微机继电保护装置进行电力系统的保护,微机继电保护装置在电力系统的广泛应用是电网及电气设备安全可靠运行的保证。微机继电保护装置可以在电力系统发生异常情况时进行检测、预警等,并且可以进行相应的自救措施。随着电力改革的进行,电网规模的不断增大,对于微机继电保护装置的要求也越来越高。电力工作者在不断地研究微机继电保护装置对电力系统运行的保护功能,不断地开发新型的微机继电保护装置,以适应我国国民对电力不断增加的需求。
一、35kV变电站中微机继电保护特点
为了更好地保证电力系统的正常运行,35kV变电站中微机继电保护特点如下:
可靠性是对微机继电保护装置提出的最基本的要求,也是微机继电保护装置最基本的特点。计算机在程序的指挥下,有极强的综合分析和判断能力,因而微机继电保护装置可以实现常规保护很难办到的自动纠错,即自动地识别和排除干扰,防止由于干扰而造成误动作。另外微机继电保护装置有自诊断能力,能够自动检测出计算机本身硬件的异常部分,配合多重化可以有效地防止拒动,因此可靠性很高。
由于计算机保护的特性主要由程序决定,所以不同原理的保护可以采用通用的硬件,只要改变程序就可以改变保护的特性和功能,因此可灵活地适应电力系统运行方式的变化。
采用微型计算构成的保护,使原有型式的继电保护装置中存在的技术问题,可以找到新的解决办法。如对距离保护如何区分振荡和短路,如何识别变压器差动保护励磁涌流和内部故障等问题,都提供了许多新的原理和解决方法。
当电力系统的运行发生异常情况时,微机继电保护装置必须及时作出相应的反应,以保障电力系统供电的可靠性。对于电力系统运行来说,在故障发生时不能及时得到处理,其影响程度可大可小。35kV变电站中微机继电保护克服传统继电保护装置功能单一的缺陷,增设了故障测距、事件记录、三角极性电压判断封功能,提高了继电保护装置的保护速度。
微机继电保护装置具有自动性,它摆脱了对站里工作人员定期检查的依赖性。在电力系统中所规定范围内的元件,如果发生异常情况,无论是短路的类型,还是短路点的位置,微机继电保护装置可以第一时间发现,并且给予正确的反应动作。另外在继电保护装置中连接微机管理系统,大大提高了继电保护的灵敏性。
二、35kV变电站中微机继电保护设计
在对电力系统35kV变电站中微机继电保护装置的设计中,一定要注意对微机继电保护装置中自动识别系统的设计。微机继电保护装置要正确区分其保护的元件是处于什么样的状态,要可以精确地区分元件发生故障的区段,所以,在进行35kV变电站中微机继电保护装置的设计中,需以电力系统故障的电气物理量变化为根据,结合电力系统的电压、电流等变化设计35kV变电站中微机继电保护。
(一)微机继电保护装置的组成
微机继电保护装置的主要作用是进行电力系统故障的检测与预警等,所以必须具有数据采集系统、微机装置的保护与管理装置等,这些基本硬件共同组成微机继电保护装置,共同为保证电力系统的正常运行做贡献。
数据采集系统主要负责采集电力系统中的各项电气物理参数,将电压与电流互感器发射的信号转化为数字信号,通过输入输出处理器传递给微机系统,以进行进一步的处理;微机装置是微机继电保护装置的核心部分,分为微机保护装置和微机管理装置。微机保护装置是继电保护的主要运行部分,它受变电所使用的软件的限制,根据不同的软件使用,确定不同的保护功能;微机管理装置的主导者是电力系统的工作人员,通过工作人员的有关 *** 作,进行模拟量信号的输出和开关信号的输入,关系到变电站中外部继电器、 *** 作把手等接点的运行。除此之外,为适应用户的需要,还配备了打印机,以对用户提供书面故障信息。
(二)微机继电保护装置的不足之处
1语音报警慢
微机继电保护装置可以在发生电力系统故障时,进行预警,但是这种语音报警的速度并不理想。当进行停送电 *** 作时,接连 *** 作几个开关后,报警才会响起。
2低周减载功能重复
专门的低周减载柜的设计是不必要的,因为在每台线路保护上都有低周减载功能,重复设计则会导致资金的浪费。
3错误使用单项供电表
在变电站中,进线分为主用和备用两路,备用回路设计计量电度表忽略了双向供电,只使用单项供电表,不符合设计要求。
三、35kV变电站中微机继电保护的应用改进策略
对35kV变电站中微机继电保护的改进,应该建立在保持原有装置功能的基础上,提高语音报警速度、加强继电档案管理工作等方面进行,全面的提高微机继电保护系统的可靠性和适用性,使微机继电保护系统能够具备广的应用范围。
(一)相位校正
变压器两侧电流的相位差在超过一定限度时会引起不平衡电流,致使继电保护的准确性受到影响。所以,在实际工程中,利用星形接法处理变压器两侧的电线,将微机软件计算功能直接应用到相位校正中,调整电流差值,增加电流相位差超限的报警功能。
(二)过电流保护
35kV变电站中的复合电压启动时形成过电流,这种过电流将对电力系统调度造成影响,所以微机继电保护装置将过电流、低电压、进行过负载保护,稳定电力系统的供电功能,形成安全的后备保护系统。
(三)主变本体保护
微机继电保护装置对于小匝间短路的灵敏度较低,所以在35kV变电站中微机继电保护的应用时,应该注意这种保护死角的设置。利用微机的自动调节功能,按照主变本体内的气体保护程序,加强对于有载调压气体保护和压力释放保护对于主变本体的保护。
四、35kV微机继电保护装置与110kV微机继电保护装置的不同
由于35kV微机继电保护装置与110kV微机继电保护装置,在电压上存在差异,所以两者在选择电源方面,虽然都以保障微机继电保护装置的安全性为主要目的,但是在选择电源电压上还具有一定的差异;110kV微机继电保护装置采用高精度、高稳定的元件来构成采样回路,这就大大降低了环境因素对继电保护误差的影响,同时增强微机继电保护装置的自检功能,打破继电保护装置自检的时间与空间的限制。取消调节器件,实现调节采样精度的非现场化,并且提高装置的稳定性,这些都是35kV微机继电保护装置所欠缺的;但是35kV微机继电保护装置具有更强大的抗干扰性,降低了电磁对于装置的影响。
小结:
传统的微机继电保护装置已经适应不了电力系统的不断发展,所以电力系统的工作者加紧研究新型微机继电保护装置的脚步,以求可以不断完善电力系统的改革,最大限度地减少电力事故对电力设备的损害,提高电力系统供电运行的安全性、稳定性、可靠性,从而满足我国国民不断增长的电力需求。
参考文献:
[1]罗钰玲 电力系统微机继电保护 人民邮电出版社
[2]文玉玲, 孙博, 陈军 浅谈微机继电保护[J] 新疆电力技术, 2009, (04)
[3]徐平 变电站微机继电保护事故处理[J] 中国新技术新产品, 2011,(03)
[4]陈德树 微机继电保护 中国电力出版社


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12929239.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存