物联网是个什么专业?

物联网是个什么专业?,第1张

最近,一直收到很多邀请,都是关于物联网专业相关的。比如:"物联网专业是骗人的吗?"、“计算机科学与技术和物联网工程怎么选?”等等。

本篇文章,就简单分析一下物联网专业,算是做一个统一的回答吧。主要以物联网工程专业作为视角进行解读。

物联网工程专业是学什么的?

物联网涵盖的技术是很多的,大概包括:传感器技术、电路设计、端到端通信、嵌入式开发、网络通信、APP开发、云服务开发等等。这些特点,决定了物联网工程是一个很宽泛的专业。它需要学习的课程,大概是计算机科学与技术、电子信工程、通信工程等等的课程的综合体。需要学习的知识,还是比较杂的。物联网里面的每一项技术都会有涉猎,但都是基础知识,并不能让你聚焦于某一项物联网技术。如果想深入某一项技术,估计得是工作之后或者考研究生了。

我想设计这个专业的最大的意义就是通晓物联网所有环节,陪养物联网的复合型人才。

物联网工程专业好就业吗?

很多学物联网工程的同学问,”学物联网太杂乱了,感觉什么都学,什么也不精通,怎么办?“。

其实在大学里面,无论什么专业都是学的基础知识,并不会让你精通。只有你考研究生的时候,才会进一步选择专业方向,继续深造下去,才能谈精通的问题。

说回物联网工程专业,那它好就业吗?刚才说了,物联网工程会学到计算机、电子信息、通信工程等等的知识。所以选择面是很广的,它们毕业了能干什么,一般物联网工程的也能干什么。但是,也会缺少一些必要的知识。所以,我的建议就是,在保证拿到毕业z书的前提下,提前想好一个就业方向,比如:软件开发、电路设计等等,然后,适当的补足欠缺的知识。在毕业之前,找一家合适的实习单位,就业应该是没那么难了。这种工科专业,基础知识基本一样,课程设置只有一些细微的差别,学起来不会有太多的困难。

另外,从大势上来说,随着5G的到来,物联网会进入一个更高的发展平台,应该会有比较大的发展。前景还是不错的。

总结一下,就是物联网工程专业,就业可选择的范围很广,理论上来说是比较好就业的。

我们该如何选择专业?

我再拓展一下,很多人也在问“要不要选择物联网专业?适不适合女生”。其实,这就是一个我们如何选择专业的问题。

下面是我的不太成熟的意见:

第一步,先要看下,大学毕业以后,这个专业,可选择的职位有哪些?比如:计算机科学与技术,可选择的职位有:程序员、测试工程师、产品经理等等;

第二步,看一下这个专业和这些职位,可以从事哪些行业。以程序员来说,可以从事的行业是很多的,互联网、金融、电信等等;

第三步,查一下行业的发展前景和职位的发展前途,包括它们的工作环境,结合自身的情况,再来判断你适不适合这个专业。

总之,物联网工程专业学的博而不精,但是就业选择范围很广。适不适合,需要根据专业的可选择职位和行业前景,进行判断。

前3GPP所提出之NB-IoT也包含各项不同的技术,目前主要可分为两个方向,一为由诺基亚(Nokia)、爱利信(Ericsson)和英特尔(Intel)等阵营支持的NB -LTE(Narrowband-LTE)以及华为和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),两种技术对于营运商最大的差别在于其可以在现有的LTE环境中,有多少可以重新使用于物联网的应用中。
现今无线通讯发展飞快,全球无线通讯,发展得如火如荼,人们对于行动通讯、影音传输或终端应用的需求日与俱增,所到之处网路无所不在,因此即便4G还再持续扩展布建时, 5G的世代也宣告即将到来,当中所含的商机更是无限。
为了迎接这庞大的通讯蓝海,各国无不积极地要抢先一步占得先机,纷纷投入许多资源及研究,对于下一代5G通讯进行规划和开发,想掌握其中的关键技术及专利,以提高被第三代合作伙伴计划(3rd Generation Partnership Project, 3GPP)标准采纳的机会,俾助国内通讯相关产业未来的发展。
5G通讯性能大耀进
在产业发展迅速的情况下,用户端的各样应用也随之增加,在面对全球用户对于数据传输与网路容量需求越来越高的状况下,5G网路便因应而生,3GPP的5G相关的标准技术预计将在2016定案,在2020年预估相关产品将可步入商用阶段。在其未来发展,不仅需要大的传输速率,并且还要比现今大以数倍的连结数,全球将走入万物皆联网的时代(图1)。
图1 5G发展趋势
知名咨询机构麦肯锡指出,2025年物联网(IoT)的应用产值将达到111兆美元,5G提出低延迟、高传输、低耗能、大连结等特性,5G行动通讯预计在2020年全球将有500亿个终端产品具备上网功能,整体系统容量(Capacity)需求也较4G增加1000倍以上,并且其传输延迟必须小于1毫秒(ms),因此下一代5G通讯的效能提升及技术挑战势必比先前更加严峻。
随着智慧电表、智慧家电、智慧工厂、可穿载设备这些应用型终端的大量出现,越来越多的工作和生活都须要透过智慧终端来解决,对此,高密度的连结及降低终端成本需求变得越来越大,必要有新的技术来因应这样的需求。
5G关键技术剖析
在5G未来发展,不仅需要大的传输速率,并且还要比现今大以数倍的连结数,全球将走入万物皆联网的时代,在3GPP首先提出机器对机器(M2M)/机器类型通讯( Machine Type Communication, MTC),其设计的目标主要有更低的设备成本、更低的功耗、更大的覆盖率和支援大量的设备连线,但外界多数认为这只是一个过渡阶段的版本,因为其功耗和建置成本还是过高,对于需要更低功耗及更大量的连结数的应用来说,其还是不够为一可使用的技术,因此3GPP在R13提出一种更低传输资料量,更低的设备成本、更广覆盖率的技术,称做NB-IoT(Narrowband-Internet of Thing),其最大的传输资料量为200kbit/s,频宽也降至200kHz,并且其覆盖率可在提升数倍,因此各主流电信营运商无不极力支持此技术(表1)。
NB-IoT抢进物联网蓝海
物联网已发展多年,各式的应用及技术都相继被提出,如LoRa和SIGFOX,也都强调低功耗以及广大覆盖率的需求,但由于LoRa及SIGFOX使用非授权频谱,因此代表不管任何人皆可使用此频段,也形成许多不可控制的干扰问题,这变成在使用上非常不可靠,因此全球各大电信营运商倾向支持3GPP所提出之NB-IoT的技术,由于其使用授权频段,并且可以在原本的蜂巢式网路设备上快速部署NB-IoT的建置,对营运商而言便可以节省布建成本及快速整合原有长程演进计画(LTE)网路,因此可以预见未来NB -IoT将为全球主流电信商所推行的方向。
NB-IoT为一低功耗广域网路(Low Power Wide Area,LPWA)的技术,其特点便是极低的功耗和广大的覆盖率及庞大的连结数,其装置覆盖范围可以提升20dB,并且电池寿命可以超过10年以上,每个NB-IoT载波最多可支援二十万个连结,而且根据容量需求,可以透过增加更多载波来扩大规模,使单一基地台便能支援数百万个物联网连结。
在NB-IoT的设计上有几项目标,一为提升涵盖率,可以藉由降低编码率(Coding Rate)来提升讯号的可靠性,进而使讯号强度微弱时,依旧能够正确解调,达到提高覆盖率的目的,另外为要大幅提升电池使用周期,其发送的能量最大为23dBm,约为200毫瓦(mW),还有为降低终端的复杂度,因此其调变上使用恒定包络(Constant Envelope)的方式,可以使功率放大器(Power Amplifier, PA)运作于饱和区间,让传送端有更好的使用效率,在实体层设计上,也可以简化部分元件,使复杂度降低,还有为减少系统频宽,其频宽设计在200kHz,因为在物联网上不需要这么高的传输速率,所以便不需要这么大的频谱,在使用上也能够更d性地分配,而还有一个重要设计目标就是要大幅的提升系统容量,使得大量的终端能够同时连结,其中一种方法为可以使子载波区间更小,使得在频谱资源分配上能够更加的d性,切出更多子载波分配给更多的终端。
NB-IoT在频谱上有三种布建方式,第一种为单独布建(Standalone),此种布建方式为使用独立或全球行动通讯系统(GSM)的频谱,彼此不会互相干扰,是最单纯的布建方式,但需要一段自己的频谱。第二种是使用保护频段(Guard Band)来布建,利用LTE频谱边缘保护频段,讯号强度较弱的部分布建,优点是不需要一段自己的频谱,缺点是可能发生与LTE系统干扰问题。而第三种是在现行运作频段内布建(In Band),部署情境如图2所示,在使用的频谱则选择在低频段上,像是700MHz、800MHz、900MHz等,因为在低频段能有更广的覆盖率,并且有较好的传波特性,对于室内环境可以有更深的渗透率。
图2 NB-IoT三种部署情境来源:NB-IoT enabling new business opportunities, 华为
然而,目前3GPP所提出之NB-IoT也包含各项不同的技术,目前主要可分为两个方向,一为由诺基亚(Nokia)、爱利信(Ericsson)和英特尔(Intel)等阵营支持的NB -LTE(Narrowband-LTE)以及华为和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),两种技术对于营运商最大的差别在于其可以在现有的LTE环境中,有多少可以重新使用于物联网的应用中。
在NB-LTE几乎可与目前现行的LTE设备相容,但NB-CIoT可说是一个重新设计的技术,须要建构新的晶片,但在其涵盖率可望更加地提升,设备成本也更为降低,因此两个技术可说各有千秋,下面将对两个技术做一概述。
NB-LTE向后兼容降成本
在NB-LTE使用的频宽为200KHz,在下行使用的是正交分频多工存取(Orthogonal Frequency Division Multiple Access,OFDMA)的技术,子载波频宽为15kHz,而在正交频分多工(OFDM)符元(Symbol)以及时隙(Time Slot)和子讯框(Subframe)的区间,与原有的LTE规范相同。
NB-IoT上行使用的是单载波分频多重存取(Single-carrier Frequency-Division Multiple Access, SC-FDMA),子载波频宽为25kHz,是原本LTE子载波频宽的六分之一,而在符元以及时隙和子封包的区间为原有LTE的六倍。NB-LTE最主要希望能够使用旧有的LTE实体层部分,并且有相当大的程度能够使用上层的LTE网路,使得营运商在布建时能够减少设备升级的成本,在建置上也能够沿用原有的蜂巢网路架构,达到快速布建的目的。
以下行部分来看,在同步讯号(PSS/SSS)、实体广播通道(PBCH)及实体下行控制通道(PDCCH)等须要去做调整或重新设计,并且在原来一些控制通道,如实体控制格式指示通道(PCFICH)和实体混合自动重传请求指示通道(PHICH),则省略去给资料做传送。而在NB-LTE中,为了将频宽缩减至200kHz,为原本LTE最小频宽14MHz的六分之一,因此将传送的时间周期拉长,所以在NB-LTE定义一种新的时间单位,称作M-subframe,其为原有LTE系统连续六个Subframe所构成,因此其时间长度为6毫秒,而六个M-subframe构成一个M-frame(图3),在一个M-subframe,最小的调度单位为一个实体层无线资源区块(Physical Resource Block,PRB),代表一个M-subframe中最多能够支援六个终端。
图3 NB-LTE下行封包设计来源:3GPP TR 45820
在上行部分,使用的是SC-FDMA,终端能够d性的使用各个单载波资源,在NB-IoT的应用上,接收端必须要能够容忍非常弱的讯号,而且时间延迟可能会很大,由于每个终端要与基地台做时间的对齐,其时间的误差要小于循环字首(Cyclic Prefix,CP),所以在CP的设计上必须要更加地拉长,因此在子载波频宽的设计上为原来的六分之一,到25kHz,这么做也可以使终端设备在频谱上做更d性的配置。
NB-CIoT新设计大应用
在NB-CIoT中,下行使用的是OFDMA,与以往的LTE系统不同,NB-CIoT使用四十八个频宽为375 kHz的子载波,并使用六十四点的快速傅立叶转换(FFT),其取样频率240kHz,也与旧有的LTE系统不同。在时间单位上,NB-CIoT一个封包由八个子封包组成,而在每个子封包可在分为三十二个时隙,每个时隙又分为十七个符元(图4)。
图4 NB-CIoT下行封包设计来源:3GPP TR 45820
其在各个讯号通道也重新设计,如同步讯号(PSS/SSS),虽也像LTE系统使用固定振幅(Constant Amplitude)的ZC序列(Zadoff-Chu Sequence),但其会复制两次传送,为的是增加侦测的可靠度,而在实体下行分享通道(PDSCH)原本使用涡轮码(Turbo Coding)的编码,也改为适合小资料传输的卷积编码(Convolution Coding),可更加简化系统架构及复杂度,提高系统应对物联网需求的能力。
在上行部分,采用的是分频多重存取(Frequency Division Multiple Access,FDMA)系统,与OFDM系统相比,每个子载波间不需要正交,因此并不需要精确的时间及频率校准,而在频率使用上,NB-CIoT使用三十六个5kHz频宽的子载波,而其支援GMSK(Gaussian-shaped Minimum Shift Keying)的调变,GMSK为恒定包络的调变并且有PSK(Phase Shift Keying)的特性,可提供较高的频谱效益,并且可以使PA运作在饱和区间,得到更有效率的表现。
可以发现在NB-CIoT在整体设计上和以往LTE系统有非常大的不同,不仅在封包时间的架构上,在各个使用的通道也重新设计,因此对于营运商来说,必须要重新设计晶片模组,对于成本及建置的速度上便是一大需要顾及的地方。
NB-LTE与NB-CIoT各有千秋
NB-LTE与NB-CIoT各项技术的比较如表2所示,在NB-LTE中,大部分与原有LTE系统相同,如使用的接取技术和FFT与取样频率的大小等,但NB -CIoT,却是截然不同的设计规格。
对于营运商来说,NB-LTE能够与旧有的系统直接套用,无须耗费太大的成本,并且能够快速度布建在原有的蜂巢式网路基站中,而NB-CIoT中,不论在封包设计、取样频率或子载波频宽大小上,都与原本LTE不同,但正由于其是专为物联网所重新设计的规格,因此它在各样应用于物联网的特性上,会比NB- LTE更加地适合,如在取样频率上,NB-LTE依旧是192MHz,这在设备的成本上依旧会是一大考量,而NB-CIoT的取样频率就降至240kHz,便可以大幅降低设备成本以及耗电量。
NB-CIoT的CP也较NB-LTE更加地长,便更能够抵抗时间的延迟,使传输距离可以更远,所以NB-LTE与NB-CIoT都各有不同的优势与劣势,因此最后定案的技术与运作模式可能要等到3GPP所订出之标准规范后才能明朗化。
最终的NB-IoT的版本可能是这两个版本中选择一个,或是两个技术尽量融合成一个版本,但有几项技术原则必须要存在,包括:NB-IoT要同时支援Standalone、Guard Band及In Band的三种布建方式;使用180kHz的频宽;在下行链路使用OFDMA的系统;在上链使用GMSK或SC-FDMA系统;在L2以上的技术与通信规范,要尽量与原有LTE系统重用。
NB-IoT势在必行
在未来进入万物联网的时代,各种后端应用相继产生,因此要如何使这些应用彻底地实现,以及营运商要如何在这当中分得其中一块大饼,NB-IoT无疑是一个必要推行的技术,由于如SIGFOX或LoRa,其使用免授权频段,对于资料可靠性和安全性是一大考量,重要的是营运商如何在其中获取利益也是须要考量的部分,而NB-IoT由既有的LTE网路架构,再更新其部分设备元件,便能够快速地打入物联网市场,对于未来一日千里的通讯发展及需求,建置及部署的速度无疑是非常关键的考量,并且其使用的是授权频段,对于资料的安全性及可靠度便大大的提升,且可以减少许多不必要的干扰问题,在今年(2016)的年中预计会定出一版NB-IoT的标准规范,届时便能够看见将来的窄频物联网的发展。

5g技术在物联网的应用属于网络与通信技术。与4G技术相比,5G技术的速度和稳定性得到了显著提高,5G的到来将带来更快的网络速度、面向更多的网络连通性、超低的延迟、更高的可靠性以及无处不在的网络覆盖,这些网络特性将使物联网比现在更可靠、更安全。物联网可以通过与5G网络的集成而变得更加高效,从而使用户得到更好的应用体验。

物联网其实到目前为止也没有一个精确的定义,一般来说,我们认为物联网是传统的互联网向物理世界的一个延伸。通过连接物理世界,使得网络能够更好的为人类服务。物联网能够广泛用在生产和生活的各个方面,产生了如智慧家庭、智慧城市、智慧农业、智慧医疗、智慧环境等一系列相关的应用场景。
涉及的主要技术包括以下几种:
1、传感器网络技术
传感器网络实现了数据的采集、处理和传输三种功能。它与通信技术和计算机技术共同构成信息技术的三大支柱。传感器网络是由各种各样的传感器节点所组成,用以进行信息的收集、传输和处理的网络系统。
作为物联网感知和获取数据信息的重要手段,传感器网络在物联网中发挥着极为重要的作用。无线传感器网络是一项通过无线通信技术把数以万计的传感器节点以自由式进行组织与结合进而形成的网络形式。
无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围;传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。
构成传感器节点的单元分别为:数据采集单元、数据传输单元、数据处理单元以及能量供应单元。
(1) 数据采集单元,通常都是采集监测区域内的信息并加以转换,比如温湿度、光照度等;
(2) 数据传输单元则主要以无线通信和交流信息以及发送接收那些采集进来的数据信息为主;
(3) 数据处理单元通常处理的是全部节点的路由协议和管理任务以及定位装置等;能量供应单元为缩减传感器节点占据的面积,会选择微型电池的构成形式。
2、RFID技术
射频识别(Radio Frequency Identification, RFID),是一种利用无线电波进行信息交换与存储的技术,通过无线射频来对电子标签进行读写,以达到自动识别目标以及信息交换目的。
RFID系统通常由读写器、电子标签与数据管理系统组成,其工作原理一般是由读写器在一定范围内发送无线电射频信号,当电子标签接收到读写器所发射的无线电信号时,就会利用感应电流所获得的能量(无源RFID),或者主动发送无线电信号(有源RFID)将标签芯片内所存储的产品信息发送出去,读写器接收到电子标签所发射的信息并解码后,再将这些数据信息反馈至数据管理系统进行数据处理。
RFID系统主要由标签、阅读器和天线三部分组成。一般由阅读器收集到的数据信息传送到后台系统进行处理。
(1)标签:标签由耦合元件及芯片组成,每个电子标签都具有唯一的电子编码,附着在物体上标识目标对象;每个标签都有一个全球唯一的ID号码——UID(用户身份z明),其在制作标签芯片时存放在ROM中,无法修改,其对物联网的发展有着很重要的影响。
(2)阅读器:阅读器是读取或写入标签信息的设备,可设计为手持式或固定式等多种工作方式。对标签进行识别、读取和写入 *** 作,一般情况下会将收集到的数据信息传送到后台系统,由后台系统处理数据信息。
(3)天线:天线是用来在标签和阅读器之间传递射频信号。射频电路中的天线是联系阅读器和电子标签的桥梁,阅读器发送的射频信号能量,通过天线以电磁波的形式辐射到空间,当电子标签的天线进入该空间时,接收电磁波能量,但只能接收其很小的一部分。
3、嵌入式系统技术
嵌入式系统一般是用户针对特殊需求而定制的,能够被内部计算机控制的设备或系统。嵌入式系统往往结合了计算机技术、通信技术以及自动化技术,使得传统的机电产品智能化,并具有故障诊断、自动报警以及信息传输和远程控制等多种功能,用以实现产品使用与管理的信息化、智能化。
由于嵌入式系统体积小、功能强且成本较低等,使其广泛应用于智能家居、车联网等领域。嵌入式系统的核心由一个或多个微处理器或微控制器组成,这些微处理器或微控制器经过预编程以执行一些任务。嵌入式系统上的软件通常是暂时不变的。嵌入式系统需要与应用紧密结合的,它具有很强的专用性,必须结合实际系统需求进行合理的裁减利用。用先进的计算机技术、半导体技术和电子技术与各行业的具体应用相结合的知识集成系统。
从应用角度可分为通用型嵌入式 *** 作系统和专用型嵌入式 *** 作系统。常见的通用型嵌入式 *** 作系统有Linux、VxWorks、Windows >本教程 *** 作环境:windows10系统、DELL G3电脑。
物联网的核心技术是什么物联网技术将新一代信息网络技术进行高度集成和综合运用,实现万物相联的理想,让世界成为一个实际意义上的“整体”,成为新一轮产业革命的重要方向和推动力量。因为互联网技术,社会各方面得到了显著提升,科技也有了很多的应用空间,但是,渗透在我们生活方方面面的物联网五大核心技术,你了解吗?
一、射频识别(RFID)技术
射频识别(RadioFrequencyIdentification,简称RFID)是通过无线电信号识别特定目标并读写相关数据的无线通讯技术。此技术拥有众多优点,无接触的自动识别、全天候、识别能力强、无接触磨损、并且能够对多个物品实现自动识别等。实现“世界想联”的理想可以依靠射频识别技术将全球范围内物品的跟踪与信息共享。
如今,RFID技术市场逐渐应用成熟,标签成本低廉,但是鉴于这项技术一般没有数据采集的功能,所以多用于甄别和属性的存储。在我国,这项技术的应用领域主要是身份z识别、电子收费和物流管理领域。
二、网络通信技术
网络通讯中包含很多技术,其中的4G通讯技术及5G通讯技术,还有非常普及的无线通讯技术及M2M技术。不同的技术应用在不同的领域,发挥出不同的作用。
在控制领域,空调4G远程控制器,就运用了4G通讯技术,远程完成对空调的控制过程,在智慧农业中的无线灌溉中,就运用了LORA无线通讯技术,完成自动化灌溉。在智能领域,通过M2M通信技术,实现人、机器和系统三者之间的智能化、交互式无缝连接,使机器与机器之间能够在无人为干预的情况下进行及时的通信和 *** 作。

三、GPS技术
GPS技术又称之为全球定位系统,它是具有海、陆、空全方位实时三维导航和定位能力的新一代卫星导航与定位系统。GPS技术可以和无线通讯技术相结合,就可以实现全球定位,在我物流智能化,智能交通中占据重要作用。据悉,最早的的GPG卫星定位系统的服役年龄即将到达,我国的北斗卫星已经开始启用。同样作为定位系统,一个即将退役,一个刚刚开始,未来的发展可期。
四、计算机技术
在物联网中,计算机技术得到了全面的普及和广泛的应用,在20世纪,计算机技术作为最先进的科学发明之一,物联网技术源于计算机技术,计算机技术依托于物联网再次发展,从而使得万物互联互通,并为社会提供了诸多方便,得到了普通的认可。在智慧农业,智慧城市,气象站监测站等设备中,传感器检测数据后上传至环境监控云平台就是运用了计算机技术。
五、传感器技术
在物联网中,计算机技术是它的大脑,通信技术是它的血管,GPS技术是它的细胞,射频识别技术是它的眼睛,传感器是它的神经系统。外界的一切信息,传感器都可以感觉到,并将感觉到的信息传递给大脑。

传感器技术在智能领域应用极广:
在测试领域:有86液晶显示温湿度变送器、工业级温湿度变送器、室内型温湿度变送器、防水壳温湿度变送器等。
在智慧农业领域:有光照二氧化碳温湿度传感器、有风速、风向传感器、有多功能百叶盒等。
在无线灌溉领域:有土壤PH值变送器、有土壤温湿度变送器、有土壤速测仪等。
物联网技术应用领域特别的广泛,几乎包揽了任何行业,在环境监测方面、在物流运输方面、在商业金融方面、在航空航天方面都遍布它的身影,或许在将来,会有更厉害的技术超越它,但现在,它依旧符合时代发展的战略需求。
更多相关知识,请访问常见问题栏目!

物联网(IoT)、云计算和5G技术之间有密切的关系。

物联网是指将各种物品(例如家用电器、工业设备、车辆、传感器等)通过互联网连接在一起,实现数据共享和实时监测的网络系统。

云计算则是指通过互联网将计算资源和数据存储服务提供给用户的一种方式,是支持物联网发展的重要基础设施之一。

5G技术则是一种新一代移动通信技术,具有更高的速度、更低的延迟和更大的容量,能够支持更多的物联网设备接入和数据传输。

物联网需要大量的计算和存储资源来处理海量的数据,而云计算提供了可扩展、d性和高效的计算和存储资源,为物联网提供了强有力的支持。同时,5G技术能够提供更快的数据传输速度和更稳定的连接,为物联网提供了更为广阔的应用场景和更高效的数据传输方式。

综上所述,物联网、云计算和5G技术之间相互依存,共同促进了数字化、智能化和网络化的发展。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12930420.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存