浅谈万物互联时代IP地址需求

浅谈万物互联时代IP地址需求,第1张

从人与人相连接,到万物互联,互联网技术的演进正在给人类社会带来巨大变革。随着物联网在近几年的爆炸式发展,IP地址变为稀缺资源,多国开始参与建设根服务器,以IPv6协议为基础的下一代互联网,正快速改变现有互联网的面貌与格局,全球已经进入了互联网发展的“拐点”,本文将分析IPv6的发展以及各种影响因素,对于5年后全球IP地址的需求量进行预测。

网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。 IP层接收由更低层(网络接口层)发来的数据包, 并把该数据包发送到更高层——TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)[ [1] ]。

为了实现TCP/IP,网络中的每个设备都需要根据恰当的信息正确地配置。特别是,每个设备都需要分配一个本地的IP地址,以便让网络来认识这个设备。一个IP地址就是一个数字的标签,类似街道门牌号码,用一种“点+地址”的方式表述,每个十进制数字代表一串八个二进制数字——0和1。一个路由器如果要明白需要将哪个数据传输到哪个设备上,就必须用到IP地址。TCP/IP向路由器广播数据,用特定的IP地址来区分数据的接收者。路由器读到IP地址然后转发这个数据到这个地址的计算机上。

连接到今天的互联网上的每个服务器或设备都会被分配一个自己的IP地址。在未来的物联网世界里,每个单一的设备,不管多小,也必须要被分配IP地址。所以产生了由于需要联网的设备数量巨大,很容易超过可用的IP地址数量的问题——至少在当前的IPv4中。IPv4提供了大约43亿的唯一地址,其中的大部分已经被分配给了已有设备。

按照工信部在2010年的预估的5年间,我国IP需求量会增至345亿,包括移动互联网为10亿,物联网预计需求量为100亿,固定互联网为5亿(考虑IP地址33%的利用率)。而再要考虑到2025年,需求的增加将更将随着5G的部署和智能设备的普及而翻倍。尽快普及下一代互联网协议是一种解决方案,IPv6协议理论上扩充到了多达340个100万的11次幂的地址,远远超过所有可能的物联网设备所需要的地址。但是要预测5年后的全球IP地址数量还需要考虑诸多因素。

工程师在过去的十几年间,尝试通过各种办法为IPv4 协议续命延缓 IP 资源耗尽的时间。比如NAT 技术可以很大程度上缓解 IPv4 的地址短缺问题并且能够保护私有内部的网络,提供防火墙的功能;IPv4 与 IPv6 协议完全不兼容,我们需要引入双协议栈、隧道技术或者 NAT64 解决兼容性问题,而应用这些技术也需要额外的成本;通过对资源的细粒度管控,并回收不再使用的 IP 地址,延缓 IP 地址耗尽的时间等。

但是,发展IPv6成为全球公认的下一代互联网解决方案,全球你追我赶普及IPv6的竞争态势正在形成。IPV6是一个网络拓扑的革命。不需要二手中转,也不需要P2P打洞,两个物联网的设备之间就可以非常好地自由地通讯。每一个设备也不需要躲在网关后面,就可以升级到网络世界的一等公民。而且因为都是直接IP, Ipv6网络可以降低10~30%的网络延时。在可预见的未来 IPv4 协议也终将被 IPv6 替代。而在接下来的5年,IPv6发展趋势依旧,到2025年,IPv6将占据大部分市场,5G使得万物互联成为可能,预测结果将基于IPv6。

根据APNIC Labs提供的全球IPv6 用户数及IPv6用户普及率的数据(该机构的测量工具对中国数据的测量可能不准确),截至2020年6月,全球IPv6用户数排名前五位的国家/地区依次是印度(358亿)、美国(143亿)、中国(12亿)、巴西(5千万)、日本(4千万)。

在域名系统方面,根据Hurricane Electric提供的数据,截止2020年6月,在全球1511个顶级域中,有1489个支持IPv6,占总量的985%,在这1511个顶级域中,有1485个权威服务器支持IPv6,占顶级域总量的983%。另外,经测试全球共有至少15114074个拥有AAAA记录的域名,占总域名量的59%。在Alexa排名前100万的网站中,共有203197(203%)个网址在AAAA记录中提供IPv6地址。同时,全球共有5万1千多个网址可以通过IPv6起始的域名提供IPv6访问。

根据We Are Social的全球数字报告数据,近五年全球联网的网民数量以稳定速度增加,2015年全球网民为342亿人;2016年全球网民达到377亿人;2017年全球网民达到402亿人;2018年全球网民达到439亿人;2019年全球网民达到454亿人。网民占全世界的总人口数量从46%增长到59%。从增长的趋势上看,全球的网民的增长速度稳定且逐渐增加。

在近五年中,非洲和南亚地区网民的增长数量极为显著,而相比之下,发达国家呈现小的增幅。整体来看,互联网用户并不是均匀的分布在全球各地,在非洲和南亚的大部分地区仍然数量较少。所以虽然发达国家,比如美国,在网民数量上将要达到瓶颈峰值,但是在全球范围,增长的趋势在接下来的5年也将基本保持。随着社会制度的完善,越来越多的老年人使用互联网,也是网民数量增长的一方面,预计2025年网民数量将可能突破60亿。考虑私人联网以移动设备的社交等基本需求为主,以人均一个IP地址作为基数,就至少需要60亿IP地址。

自2008年“智慧地球”提出以来,物联网概念在全球范围内迅速被认可,并成为新一代信息技术的发展方向。如今,物联网连接数量实现爆发式增长,物联网的商业化应用已经占据了整个市场的半壁江山,在物流、交通、建筑、医疗等行业应用已得到发展,但在对智能化要求较高的领域如智慧交通、制造、能源等,仍处于分散的、小规模的状态。

从全球角度出发,物联网产业正处于建立和完善过程中,物联网行业应用仍处于初级阶段,但随着5G、AI、区块链技术的发展,行业将进入加速发展阶段。各国为了抢占新一轮物联网行业的发展先机,纷纷出台政策进行战略布局。美国的“SMART物联网法案、欧盟的十四点行动计划、日本的“i-Japan战略”、韩国的“u-Korea”策略规划、新加坡的“下一代I-Hub”计划等都将物联网作为当前发展的重要战略目标。据市场分析公司高德纳(Gartner)估计,2020年全球物联网设备数量达到260亿个,物联网市场规模达19万亿美元。

各大机构对全球物联网未来发展的预测如下表:

综合各大机构的预测数据,以全球各国物联网的增长速度,智能设备在2025年可突破750亿,万物互联要每一个智能设备可以拥有一个自己的IP地址,全球对于IP地址的需要也达750亿。

物联网发展技术壁垒可能导致智能设备在普及用户方面受到限制而影响智能设备对于IP地址的需求量。根据《2014-2019年中国物联网行业应用领域市场需求与投资预测分析报告》显示,物联网需要多行业、多学科知识和技术的协同配合,物联网企业特别是从事跨越多层产品生产和服务提供的企业,需具备较强的通信技术、信号处理技术、信息处理技术等专业研发能力,还需要拥有较强的底层协议、微 *** 作系统、与硬件紧密结合的嵌入式软件和信息处理应用平台软件开发能力。这样的要求在5年完成也是较大的挑战。

另一方面,NAT可以避免内部IP的频繁修改,可以当做防火墙,保护内部网络,在IPv6快速部署中也有存在的空间,这样对于大量的智能设备而言,可能不需要独立的IP地址。

基于IPv6的下一代互联网,正快速改变现有互联网的面貌与格局,在未来将成为支撑前沿技术和产业快速发展的基石,有力支撑起人工智能、物联网、移动互联网、工业互联网、5G等前沿技术的发展,催生出更多新业态、新应用、新场景,最终惠及到每一个网民。全球产业界已经为快速普及IPv6做好准备。通过之前各项因素的考虑,预计5年之后,全球IP地址的需求量在500亿左右,考虑到IP地址的利用率不是100%,全球IP地址的需求量超过650亿。

[[1]] 叶舟IPv4向IPv6过渡关键技术研究[D]江苏:扬州大学,2009 DOI:107666/dy1702450

MQTT:MQTT(MessageQueuingTelemetryTransport,消息队列遥测传输协议),是一种基于发布/订阅(publish/subscribe)模式的"轻量级"通讯协议,该协议构建于TCP/IP协议上,由IBM在1999年发布。
物联网(TheInternetofThings,简称IOT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。

 1)安全隐私
如射频识别技术被用于物联网系统时,RFID标签被嵌入任何物品中,比如人们的日常生活用品中,而用品的拥有者不一定能觉察,从而导致用品的拥有者不受控制地被扫描、定位和追踪,这不仅涉及到技术问题,而且还将涉及到法律问题。
2)智能感知节点的自身安全问题
即物联网机器/感知节点的本地安全问题。由于物联网的应用可以取代人来完成一些复杂、危险和机械的工作,所以物联网机器/感知节点多数部署在无人监控的场景中。那么攻击者就可以轻易地接触到这些设备,从而对它们造成破坏,甚至通过本地 *** 作更换机器的软硬件。
3)假冒攻击
由于智能传感终端、RFID电子标签相对于传统TCP/IP网络而言是“裸露”在攻击者的眼皮底下的,再加上传输平台是在一定范围内“暴露”在空中的,“窜扰”在传感网络领域显得非常频繁、并且容易。所以,传感器网络中的假冒攻击是一种主动攻击形式,它极大地威胁着传感器节点间的协同工作。
4)数据驱动攻击
数据驱动攻击是通过向某个程序或应用发送数据,以产生非预期结果的攻击,通常为攻击者提供访问目标系统的权限。数据驱动攻击分为缓冲区溢出攻击、格式化字符串攻击、输入验证攻击、同步漏洞攻击、信任漏洞攻击等。通常向传感网络中的汇聚节点实施缓冲区溢出攻击是非常容易的。
5)恶意代码攻击
恶意程序在无线网络环境和传感网络环境中有无穷多的入口。一旦入侵成功,之后通过网络传播就变得非常容易。它的传播性、隐蔽性、破坏性等相比TCP/IP网络而言更加难以防范,如类似于蠕虫这样的恶意代码,本身又不需要寄生文件,在这样的环境中检测和清除这样的恶意代码将很困难。
6)拒绝服务
这种攻击方式多数会发生在感知层安全与核心网络的衔接之处。由于物联网中节点数量庞大,且以集群方式存在,因此在数据传播时,大量节点的数据传输需求会导致网络拥塞,产生拒绝服务攻击。
7)物联网的业务安全
由于物联网节点无人值守,并且有可能是动态的,所以如何对物联网设备进行远程签约信息和业务信息配置就成了难题。另外,现有通信网络的安全架构都是从人与人之间的通信需求出发的,不一定适合以机器与机器之间的通信为需求的物联网络。使用现有的网络安全机制会割裂物联网机器间的逻辑关系。
8)传输层和应用层的安全隐患
在物联网络的传输层和应用层将面临现有TCP/IP网络的所有安全问题,同时还因为物联网在感知层所采集的数据格式多样,来自各种各样感知节点的数据是海量的、并且是多源异构数据,带来的网络安全问题将更加复杂


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13049199.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存