钢铁企业如何利用物联网技术推进智能制造

钢铁企业如何利用物联网技术推进智能制造,第1张

钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。

智能制造引领新一轮制造业革命,也是一场具有划时代意义的深刻的工业革命。《中国制造2025》明确坚持创新驱动、智能转型、强化基础、绿色发展,加快我国从制造大国向制造强国转变。推进钢铁行业智能制造是时代发展的必然趋势,也是我国实现钢铁强国的必由之路。

时下,我国钢铁行业正在全面贯彻实施《钢铁工业调整升级规划(2016-2020年)》(以下简称《规划》)。“十三五”期间,我国钢铁工业将进入以结构调整、转型升级为主的发展阶段,也是钢铁工业结构性改革的关键阶段。钢铁行业要积极适应、把握、引领经济发展新常态,落实供给侧结构性改革,以全面提高钢铁工业综合竞争力为目标,以化解过剩产能为主攻方向,坚持结构调整、创新驱动、绿色发展、质量为先、开放发展,加快实现调整升级,提高我国钢铁工业发展质量和效益。

要实现钢铁工业“十三五”规划的目标,钢铁企业必须全面推进智能制造,而《规划》为我国钢铁行业如何推进智能制造指明了方向,确定了目标,指出了路径。

钢企智能制造探索步伐加快

如今,不少钢铁企业已经在智能制造上开拓探索和实践,取得了较好的成效。宝武集团、沙钢等大型钢企采用工业机器人、无人行车、无人台车、无人仓库等智能制造技术来提高劳动效率,降低生产成本,在钢铁生产自动化、库存、营销等关键环节智能化水平先进。

一些大型钢厂将智能制造分成“3+1”模式,即“智能装备、智能工厂、智能互联和基础设施”,进行探索和实施。据介绍,目前,该领域研发的课题主要是钢铁制造全流程在线检测—监测技术及数字化、智能化嵌入技术,分布与集成相结合的余热余能梯级利用和系统回收技术,钢铁生产智能化能源管控与环境优化技术,污染物分布与集中结合的协同控制与一体化脱除技术,钢厂与相关产业互补链接及与周边社会共生共荣生态链接技术,钢铁流程制造和服务一体化网络集成技术,钢铁制造流程物质流、能量流、信息流协同动态调控技术,高性能钢铁产品定制化、减量化生产及装备技术,高性能钢铁产品全生命周期智能化设计、制备加工技术。

从目前来看,不少钢企纷纷进入智能制造领域:

有的钢厂借助“互联网+”、物联网和智能制造技术,依托传感器、工业软件、网络通信系统、新型人机交互方式,实现人、设备、产品等制造要素和资源的相互识别、实时联通,促进钢铁研发、生产、管理、服务与互联网紧密结合,推动钢铁生产方式的定制化、柔性化、绿色化、网络化、智能化。

有些技术、资金实力雄厚的钢铁企业,则以钢铁流程绿色化、智能化集成为目标,重点围绕制造流程结构优化、制造流程技术提升、钢铁制造服务平台建立、新型商业模式建立与运营四大关键路径进行研发。

有的钢厂以关键环节机器换人为抓手,尝试和实践全工序机器换人,提升智能化生产水平,先后建成5000毫米宽厚板和特棒示范智能车间,形成了独具特色的智能制造发展之路。

有的钢厂明确智能制造目标,稳步推进:减少人工作业,提升自动化能力;全面推进建立区域化、工序化的信息监控、管控平台;制订公司智能化制造规划,并成立智能制造推进项目团队,以实现从机械化、自动化、信息化到智能化的逐步转变。

有的钢企确定了智能制造目标,即在未来几年内建设、改造一批智能化产线,完成基于互联网来满足用户个性化需求的智能化研发、生产、销售体系构建,促进企业实现向智能制造模式的转型。

钢企推进智能制造该如何着力?

一家钢企从事自动化生产工作的负责人坦言:“我们公司不是不想尝试智能制造,而是不知道该怎么着手。”

曾有一家大型钢铁企业工程师也向笔者表示,目前,国内钢铁智能化仍处于初级阶段,在实际生产过程中还是以经验为主导,尽管个别生产线有自己的数据库,但一般为生产工艺的数据,在上下游衔接等方面没有形成一个统一的系统。

那么,钢铁行业该如何加快推进智能制造?在一系列钢铁产业发展的高峰论坛上,业内专家就我国钢铁业推进智能制造发表了各自的见解,给钢铁企业诸多的思考和启迪。

业内专家指出,钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。智能制造是制造业未来发展的重大趋势,也是当前钢铁行业转型升级、提质增效的重要着力点。早在2015年工信部发布的《2015年智能制造试点示范专项行动实施方案》,决定自2015年启动实施智能制造试点示范专项行动,以促进工业转型升级,加快制造强国建设进程。其中,钢铁行业已被列入工信部的智能制造试点范围。

专家同时强调,推进钢铁行业智能制造是一个庞大的系统工程,涉及资金、技术、人力等诸多方面,系统策划是确保目标一步一步实现的有效方法,不能急功近利、一哄而上,而要稳扎稳打、分步实施、循序渐进,即针对我国钢铁行业和智能制造的特点,逐步推进制造过程智能化。诸如,在重点领域试点建设智能工厂或数字化车间,加快人机智能交互、工业机器人、智能物流管理等技术和装备在生产过程中的应用,促进钢铁制造工艺的仿真优化、数字化控制、状态信息实时监测和自适应控制等的发展。同时,在此基础上全面实施高级计划排程(APS)系统,实现敏捷制造和精准交货。

专家表示,在推进企业决策智能化方面,目前主要以两化深度融合为载体。钢铁智能制造的核心是对信息资源的有效开发和高效利用,目标是提高资源的全局利用效率,其重点在于决策的智能化。为提高资源和能源利用效率,钢铁企业应采用系统优化的思想,建立具有冶炼技术和经济成本的双重模型,实现单部门局部优化与多部门一体化全局优化的平衡。

大数据是传统数据库、数据仓库、商业智能概念外延的扩展和手段。推进大数据的集成应用,关键在于健全钢铁行业信息化基础设施,整合冶金数据资源,突破钢铁行业大数据核心技术,提升钢铁大数据分析应用能力,提高数据安全保障能力,培养复合型大数据人才,组织实施制造业大数据创新应用试点,以推动制造模式变革和冶金行业的转型升级,培育发展冶金产业新业态。

以上由物联传媒转载,如有侵权联系删除

11月17日,MIoT美的工业互联网20在京发布,从家电制造商到 科技 集团的转型路上,美的集团在产业升级方面已经是先行者,2012年开始美的布局数字化转型战略进行深度业务变革,并锻造了“制造业知识、软件、硬件”三位一体的工业互联网平台,也即美的工业互联网10。

在过去的8年时间中,美的集团的营收从2011年的1341亿达到2019年的2794亿,净利润从2011年67亿增加到2019年253亿,营收、利润稳步提升的同时,经营效率、自有资金和资产状况也显著改善。这些成果的取得除了战略的决策正确以外,在方法和手段层面,美的工业互联网10时代起到的作用也是不可磨灭的。

与10相比,全新发布的美的工业互联网20有着怎样的魔力我们从三个方面,即内涵、价值和终极目标来全面解读美的工业互联网20。

首先在内涵上,美的工业互联网20相比10更为丰富,其整合了美的集团多个产业单元的软件、硬件、技术和服务能力,整体分为四层:

第一层能力层,细化为设备层(库卡机器人提供的机器人本体和自动化解决方案)、边缘层、I层(美的云提供的云基础设施)和P层(工业AI、工业大数据、工业物联网等)。

第二层应用层,包括营销领域、研发领域、智能制造领域、管理领域等美的工业互联网的传统优势层,同时又新增了SCP的物料计划的优化算法,攻克了世界级的核心技术难题,可以将物料组件化的计算时间缩短90%。

第三层商业层,原来的商业层是安得智联物流、库卡机器人两个核心成员的能力输出 ,这次又增加了产业链金融服务、核心零部件、精密模具、智慧楼宇、集采等服务。其中,美的集团旗下美易单能为产业链的众多中小微企业提供金融服务,帮助他们渡过难关目前已经累计放出贷款超过300亿人民币。核心零部件除了GMCC、WELLing的既有优势外,又多了一个新的身影就是合康新能公司,2020年4月美的集团控股了合康新能后将带来高端驱动技术和新能源 汽车 新业务的拓展。

第四层是产业层,美的已经完成家电工业互联网的打造,过去这些年同时还服务了 汽车 制造、食品加工、酒行业等领域的企业,形成了不同产业领域的工业互联网。

此次发布会上,同步发布了美的工业互联网门户网站即官方交互平台miotmideacom和美的工业互联网品牌——美擎

据悉,门户网站第一个重要作用是向用户集中展示美的工业能力,第二个重要作用是在内部形成机制,支撑平台上的所有业务能力的信息分发、数据统计、在线客服、客户接入转化和交易流程等等。

有了内涵更丰富的各种能力,外界更关心的是美的工业互联网20平台上每一种能力和服务会为企业数字化转型带来哪些实际的业务价值

具象的看,以安得智联的物流服务为例,在20的平台上,安得针对toB市场推出了智能物流服务产品——一盘货,通过渠道优化、统仓统配、线上线下一盘货,实现供应链的效率驱动。

据美的集团安得智联产品中心总监张亚明介绍,在推出一盘货之前,美的整个销售渠道各层级代理商和分销商库存各自为战,货物从美的工厂送到代理商仓库,之后的库存状态以及代理商的销售流向如何,在原来的美的体系里很难从全局了解到相应数据。实施一盘货后,将全国销售渠道的库存进行了统一管理,在集团层面和各事业部层面,对渠道库存精准数据更了解,这样能指导制定一些前端的商务策略和产品生产设计决策。同时还有效减少了串货问题,提高物流效率的同时降低了物流成本,库存共享让库存周转更快,提高了从前端到营销端的全价值链的效率。

再来看美的新控股的合康新能对智能大家电和工业设备赋能的“驱动力”。根据美的集团机电事业群合康新能总经理宁裕的介绍,合康的高压变频器目前国内的运行量在15000台以上,我们通过智能化的升级以及通过美的工业互联网对于工业客户的精益生产的提效升级,我们可以为我们的工业客户节约每年90亿度点,未来合康每年投放的高低压设备包括其他的应用,我们的总功率将达到6000兆瓦,我们通过智能化的升级和IOT的赋能,我们每年可以节约5364亿度电,这样一共可以每年减少1441万吨碳排放量,节约143亿度电,相当于三峡电站发电量的1/7,是实实在在的节能数据。

在美的工业互联网20的平台上值得一提的还有智慧楼宇的能力输出,美的将暖通和智慧楼宇整合成一个事业部,据美的集团暖通与楼宇事业部智慧楼宇总经理梁锐介绍,暖通与楼宇事业部业务板块不仅包括中央空调,还包括电梯、智慧楼宇、能源管理等围绕着楼宇的一系列业务,智慧楼宇现在作为创新单位,以研究楼宇的集中控制管理、智慧控制管理、节能、高效的建筑为方向去开展业务。

人们熟悉的北京大兴国际机场,就应用了美的暖通及智慧控制方案,实现了可再生能源高效利用,达到绿色节能的目标。

模具是工业之母,在20的平台上,精密模具快速交付的全流程解决方案也是值得一提的能力,根据美的集团家用空调事业部模具技术专家李建的介绍,通过智能化设计、数字化排产以及项目全流程管理,美的帮助客户大幅缩短模具项目开发周期,助力客户的产品提前上市、抢占先机,而且交付的模具品质可靠,注塑成型周期大幅缩短,也帮助客户大幅降低了制件库存。

2017年11月27日,国务院正式印发了《关于深化“互联网+先进制造业”发展工业互联网的指导意见》,时隔三年,美的工业互联网由10升级迭代为20,这背后有怎样深层次的原因,在美的集团今年全面数字化和全面智能化的战略背景下,美的工业互联网20会为美的实现怎样的终极目标

美的集团美云智数总裁金江表示,国家提出到2020年末初步建成低时延、高可靠、广覆盖的工业互联网基础平台,美的在这个时间段里发布美的工业互联网20,希望为工业互联网的国家战略贡献美的的力量。

另外在工业互联网的需求侧,也就是中国的制造业很多企业仍然没有结束大规模生产和大规模分销的传统模式,传统土地+劳动力成本这种非常低效的组合会越来越受到挑战,这些企业想转型升级,想变换赛道,就需要工业互联网的迭代升级来给他更多能力的支撑。

还有一个重要的原因是美的2020年初提出两个全面的集团战略,全面数字化和全面智能化,这两个战略的提出将会加速美的集团与三个重要平台的快速发展。第一个平台以美云销为代表的商业平台,第二以美居为代表的互联网平台,第三是工业互联网,工业互联网对内承载着强化产业运营能力的责任,对外要输出更多to B的能力,从美的自身战略的角度,美的的工业互联网也需要不断的进行升级和迭代。

金江表示,未来美的工业互联网对产业层的规划是希望对整个 社会 足够开放,能够吸入更多的能力来丰富美的工业互联网20,能力的选择是两个方向,“第一个方向是强化我们的能力,有些领域我们虽然有这个能力,但是别人比我们更强,要吸纳进来,第二弥补我们的不足,有些领域我们没有这个能力,有其他的互联网平台有这个能力,这些我们也是欢迎加入进来”。金江说,互联网开放一定是个大趋势,封闭肯定不可以。

就像中国工程院院士李培根所言:美的显然认识到不是一个家电企业与另一个家电企业的竞争,而是需要形成一个生态系统,跟另外一个生态系统竞争。

美的集团副总裁张小懿表示,随着MIoT工业互联网应用,全面数字化、智能化,使得美的整个价值链变革更快、更柔性,在疫情影响下保持了强劲的韧性和竞争力。希望未来工业互联网的“美的经验”,能帮助各行各业不同企业应对各种“不确定性”。

聚羧酸减水剂生产控制系统的工业物联网框架设计与实现

严海蓉1,王子明2
(1北京慧物科联科技有限公司,北京 100124,2北京工业大学,北京 100124)

摘要:工业物联网既提供了在生产过程中获取并控制聚羧酸减水剂生产设备的信息的方式,也提供了基本的网络架构,方便系统集成和扩展。该框架在分析了聚羧酸减水剂生产流程的基础上被划分为设备控制层、通讯层和应用服务层。根据实际应用需求,描述了工业物联网架构可以方便接入设备,贴近工艺完成软件,并让机器具有智能。企业应用案例表明该系统能够有效地实现生产状态跟踪监测和生产设备自动控制的目标,对进一步研究工业物联网技术和解决方案具有一定的参考价值。
关键词:工业物联网;自动化控制系统;聚羧酸减水剂生产设备
中图分类号:TP273 文献标识码:A

Theindustrial IOT design of automatic control system for polycarboxylate superplasticizer
YAN Hairong1, Wang Ziming2
(1.Beijing Sophtek Corp,2 Beijing University of Technology,Beijing 100124,China)

0引言
原来的聚羧酸减水剂生产自动化控制不能充分满足生产工艺要求,存在的主要问题是:
1) 新设备接入非常困难;
2) 同类不同厂家设备不方便更换;
3) 匀速滴加过程中不能达到理想的控制速度,传统PID算法波动较大,常需要人工手动干预;
4) 温度控制需要人工参与控制,无法完成全自动;
电话 扣扣53O934955
工业物联网是工业40的支撑框架。物联网被称为继计算机、互联网之后,世界信息产业的第三次浪潮。它的发展离不开应用,面向工业自动化的工业互联网技术是物联网的关键组成部分[1]。工业物联网通过将具有感知能力的智能终端、无处不在的移动计算模式、泛在的移动网络通信方式应用到工业生产的各个环节,提高制造效率,把握产品质量,降低成本,减少污染,从而将传统工业提升到智能工业的新阶段[2]。
工业物联网框架中,整个系统具有强大的数据服务器,能够进行大数据的计算。在数据量足够的时候能够利用网络智能来帮助企业进行决策、配方优化和自动的设备维护等。
整个控制系统具有分布式智能能力。整个系统中,可以把数据都送到中控部分来完成;也可以将一些需要及时处理的,如温度控制等,直接由现场控制来完成。系统通常分为中央控制单元和分布的现场控制单元,中央控制单元由工业控制计算机充当,现场控制单元则由高可靠、抗干扰的工业级微控制器和与当前控制需求相配套的附加电路模块组成。依托微控制器的实时处理能力可以完成对现场生产进行实时调节控制,并且通过总线实现现场控制单元与中央控制单元进行数据交互,使生产过程表现出整体性、协调性,从而优化生产工艺、提高生成效率。
系统通过总线把各个独立的控制模块组织成在一起。控制模块的独立性,使得系统中各个分布的控制模块检修、升级、数量扩充都很方便,也为在生产规模扩大时控制系统扩充预留了接口。
因此工业物联网框架才能彻底解决传统控制的一些问题,真正贴合聚羧酸减水剂生产工艺。
1 系统概要设计
根据聚羧酸减水剂的生产过程,可以将聚羧酸减水剂自动化控制系统分为设备控制层、通讯层和应用服务层,系统框架如图1所示。
图1 系统框架图
图1中,应用服务层主要实现对生产过程中实时数据和生产状态的跟踪监测和管理,同时提供各种应用UI接口,用户可以通过使用计算机、手机等手持设备登录客户端来访问或获取所需要的数据或信息等,从而实现物联网的厂内处处可访问。一旦将企业网络与公共网络连接,用户登录后就可以实现生产数据随处可访问。
应用服务层中还包括有控制逻辑层,控制逻辑层通过与 *** 作人员进行交互,并且汇集、分析、存储和处理生产过程中的实时数据和生产状态,实现生产过程的逻辑控制。
通讯层主要实现设备控制层、控制逻辑层和应用服务层之间的可靠传输。
设备控制层主要实现原始数据的采集与分析、数据和状态的上传、控制指令的接收等。嵌入式控制器内的智能逻辑将和聚羧酸减水剂生产各工序要求的生产工艺(加料、滴加、温度调节、pH调节)等紧密贴合,并与控制逻辑层相互通讯完成所要求的工艺精密控制。
整个系统采用划分层次的设计思路使得系统具有很好的可移植性,各种传感器可以灵活的接入系统。这样新系统的总体实现或者旧系统的扩展可以采用“搭积木”的方式完成构建。

2 系统详细设计
根据以上设计的系统工业物联网框架和体系结构,本研究将以北京某公司的具体项目为例,详细介绍该系统的设计和应用过程。
21设备接入示例
基于工业物联网架构的设计,可以很容易的接入各种设备。比如如图2所示的聚羧酸减水剂自动化控制系统接入了一个服务器、一个 *** 作员站、若干显示器、2个控制站,若干现场设备和用户手机。
图2基于工业物联网架构的设备接入实例
服务器负责存储生产数据,包括生产 *** 作日志和生产过程数据,便于生成台帐和报表。也可以与各种财务、资产管理软件连接。同时,负责承载起局域网与大网络的连接工作。
*** 作员站上运行的软件,方便 *** 作员在中控室来 *** 作现场各种阀门、电机等开停,从而按照工艺过程完成生产。
控制站自动获得 *** 作员 *** 作命令来控制现场设备,比如阀门等,同时也自动从现场设备获取各种状态,比如称重数据等传给控制室控制机器。
现场设备是包括传感器和各类执行器,比如秤、阀门等自动工作。
图中的手机设备是为了表示出工业物联网框架可以任意接入设备的特性。比如,在该框架下,巡视人员可以通过手机进行接入,完整现场紧急控制一些阀门的开或者是关。经理等就可以通过手机来查看每天生产数据。
同时,对于不同厂家的同类设备,该工业物联网框架也有较好的兼容能力。
22贴合工艺的软件设计
软件包括生产线管理软件和工业现场控制软件。生产线管理软件工作于生产管理计算机,主要实现工艺管理、配方管理;通过网络,根据权限,可调出 *** 作人员的现场 *** 作记录,完成对现场的远程管理。工业现场控制软件工作于车间级服务器中,主要通过与工艺以及现场布置相同的画面显示,使得 *** 作人员便于 *** 作,以实现现场设备仪表信号的采集、处理,配方管理和现场数据实时界面显示和控制等功能。
图3 聚羧酸合成控制生产工艺示意图

根据实际生产过程和自动化控制系统的特点,当前聚羧酸生产过程分大单体预化过程、 A、B料预混过程、A、B料计量罐加料过程、碱计量罐加料过程、A、B料滴加过程、反应釜搅拌控制过程、反应釜温度控制过程,针对不同的过程,分别实现其控制目标,从而达到完整生产过程的控制。
下面以工艺中的A、B料计量罐滴加控制为例来说明软件设计功能。
首先控制系统为用户提供友好的A、B滴加控制对话框,方便用户可视化 *** 作。用户可以选择采用以前输入的备用方案进行控制,也可以选择自己新输入方案进行空控制。总之都能够根据配方在规定的时间内,将指定质量的物料匀速加入到对应的反应釜中。
图4 启动已存备用方案滴加
图5 启动自定义方案采用三阶段定量滴加示例

其次控制系统采用分段式匀速滴加模式(图5),启动滴加时,控制系统计算出三个阶段分别的预期流速。控制系统实时读取当前计量罐的质量,并根据当前时间,计算出实时流速。控制系统根据实时流速和预期流速的差值,控制调节阀的开启度,从而控制滴加速度。
图6 滴加控制效果示意图(多阶段不同流速)

最后,显示出实时滴加工作界面(图6),工作工作误差一般不大于1%。
23机器学习的智能能力
原来控制系统由于没有采用物联网框架,数据存储量不充分,从而无法让机器自主学习。各种设备常常需要人来手工调整,设定最高最低值;控制过程需要人工进行干预,来辅助机器完成自动控制。
而现有的工业物联网架构,拥有了专门的数据服务器,从而可以存储较大量的数据。而对于这些数据进行分析而产生的机器智能不可小觑。
比如,以前温度控制时,只能根据人工经验设定一个固定的值。反应釜的材质、容量、夹套、搅拌电机、搅拌桨叶等设备本身因素会影响调温结果。
而往往由于冬夏的自来水、室内温度、物料温度、反应剧烈程度等也会影响调温结果。因此在控制系统安装后要进行长时间的人工参与测试来努力找到一个合适的最大最小值。而测试时间毕竟短,这个值一旦这个值固定后,后续生产时就无法轻易改变,为此生产 *** 作员常需要来观测这个温度控制过程并且来参与控制,否则很难达到理想的控制效果。
再比如对于滴加控制的PID算法,往往由设计者人为给定一个PID参数,也无法完全适应实际设备磨损等情况。
而基于工业物联网架构的控制时,可以在服务器端运行一个智能控件,由它来自动学习历史调温或者滴加流速的变化情况,不断训练软件,让软件重新找到合适的上下调节阈值,这样才可以真正达到完全自动化。整个系统拥有了自己不断学习的机器智能。

3 系统测试结果
基于工业物联网的聚羧酸减水剂自动化控制系统在设计和开发完成后,在北京某工厂的实际生产线上投入使用。目前,该系统运行安全、稳定,大部分功能已经实现,达到了预期的效果。
在系统正式投入使用后,对系统的工业现场控制软件、生产线管理软件和嵌入式控制器进行了长时间的测试。针对实现过程中遇到的问题做了大量的调试工作。下面以实现滴加A料为例对系统的测试进行描述。
*** 作人员在控制室通过点击用户 *** 作界面的A料滴加阀门按钮进行滴加参数的配置,如图7所示。 *** 作人员需要输入的参数为滴加质量和滴加时间,同时系统也支持分阶段滴加。在点击开始滴加按钮后,服务器会向嵌入式控制器发送滴加A料指令。
图7 滴加A料配置界面
嵌入式控制器在接收到服务器下发的滴加A料指令后,会进行自动化控制,实现A料的滴加 *** 作,具体效果如图8所示。
图8 5个反应釜同时进行A料滴加曲线示意图
图8中5条不同颜色的线分别表示5个不同计量罐的A料滴加曲线,系统支持多个计量罐同时进行滴加 *** 作。左侧上升的直线表示向计量罐加入A料的过程,系统支持多个计量罐同时加料,质量控制精确,定量加料的误差在01%以内。右侧下降的曲线表示滴加A料过程,曲线的斜率即为速度。由图可知,系统基本上能够实现匀速滴加A料过程,同时,系统也支持连续4小时的滴加 *** 作,时间误差在1分钟左右。
基于工业物联网的聚羧酸减水剂自动化控制系统投入运行后,提高了聚羧酸减水剂的产品质量,提高了工艺生产的自动化程度,大大减轻了 *** 作人员的劳动强度,提高了企业的竞争力。
4 结束语
本研究基于工业物联网架构设计的聚羧酸减水剂自动化控制系统对聚羧酸减水剂生产过程可以进行高效的跟踪管理,在实际应用中具有重要作用。它使聚羧酸减水剂生产设备具备了一定的数据感知、处理和通信能力,从而为企业制定更好的工艺流程提空帮助。同时,它也促使聚羧酸减水剂生产管理过程更加科学和精细化。该系统的成功开发设计为工业物联网在化工行业的推广打下了基础,做出了积极地探索。

参考文献:
[1]LIANG Wei,ZENGPeng Internet of Things Technology and Application Oriented IndustrialAutomation[J] Instrument Standardization & Metrology,2010:21-24[梁炜,曾鹏面向工业自动化的物联网技术与应用[J]仪器仪表标准化与计量,2010:21-24]
[2] KANGShilong,DU Zhongyi,LEIYongmei,ZHANG Jing Overview of industrial Internet of Things[J]Internet of Things Technologies,2013:80-82,85[康世龙,杜中一,雷咏梅,张璟工业物联网研究概述[J]物联网技术,2013:80-82,85]
[3] BIDongzhen The Design and Realization of Industrial Sewing Machines System Basedon the IoT[D]Shandong: Qingdao University,2012[毕东贞基于物联网的工业缝纫机系统的设计与实现[D]山东:青岛大学,2012]
[4]ZHANG Ximin,WANGGuoqing,DINGXuenian Development of an Internet home automation system[J] Chinese Journalof Scientific Instrument,2009,30(11):2423-2427[张喜民,王国庆,丁学年基于因特网的远程家居自动控制系统研制[J]仪器仪表学报,2009,30(11):2423-2427]
[5]WU Jiaqiang Tracking and quality monitoring system based on IOT industrial forsteel pipe[J] Journal of Mechanical &ElectricalEngineering,2013,30(11):1335-1339[伍家强基于工业物联网的钢管跟踪及质量监测系统[J]机电工程,2013,30(11):1335-1339]
[6]LI Nan,LIUMin,YANJunwei Frame work for industrial internet of things oriented to steel continuouscasting plant MRO[J] Computer Integrated Manufacturing Systems,2011,17(2):413-418[李楠,刘敏,严隽薇面向钢铁连铸设备维护维修的工业物联网框架[J]计算机集成制造系统,2011,17(2):413-418]

工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。

工业互联网不是互联网在工业的简单应用,而是具有更为丰富的内涵和外延。它以网络为基础、平台为中枢、数据为要素、安全为保障,既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能与实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态、供应链和产业链。

发展工业互联网:

当前,新一轮科技革命和产业变革蓬勃兴起,工业互联网作为数字化转型的关键支撑力量,正在全球范围内不断颠覆传统制造模式、生产组织方式和产业形态,推动传统产业加快转型升级、新兴产业加速发展壮大。

我国工业经济正面临发达国家制造业高端回流和发展中国家中低端分流的双重挤压,迫切需要加快工业互联网创新发展步伐,推动工业经济从规模、成本优势转向质量、效益优势,促进新旧动能接续转换,快速构建我国制造业竞争新优势,抢占未来发展主动权。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13151276.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-12
下一篇 2023-06-12

发表评论

登录后才能评论

评论列表(0条)

保存