蓝牙模块的原理与结构

蓝牙模块的原理与结构,第1张

蓝牙的原理,就不在这里细说了。因为百度搜索一下非常的多,并且异常的复杂,

这里简单的归类总结:蓝牙是一种短距离无线通讯技术,最大的优势就是集成在手机里面了。同时不算大也不算小的带宽,就能支持音乐播放,同时跳频机制,就增加了蓝牙的稳定性

蓝牙模块,串口蓝牙模块等等产品,顾名思义就是实现蓝牙功能的半成品模块产品。主要由蓝牙芯片和外围元器件组成,从而形成一个可以直接供用户使用的产品。正因为蓝牙芯片的种类繁多,所以很多工程师在选择的时候,不知道该怎么选

选择合适的蓝牙模块,最重要的是选择蓝牙模块最核心的主控芯片,因为主控芯片的性能,直接决定了蓝牙模块的功能,以及一些重要的参数,比如:蓝牙版本、模块体积、功耗、音频、BLE速率等等核心的参数

这个问题,建议你先从底层有个认知,便于理解实质性的区别。

一、技术原理

1)UWB、蓝牙,是一种通信技术于标准,各有其标准协议,两者应用频段也不相同,UWB遵循IEEE 802154A,蓝牙发展至今已到51代标准。

2)AOA、AOD、TOF、TDOA等,皆为定位方法,AOA可配合蓝牙应用,也可配合UWB应用,而蓝牙,目前不会配套TOF,TDOA应用,此点由硬件底层技术决定了。

3)AOA方法:简化理解,就是通过测量标签与基站的角度,进行换算得出两者的距离,因而两者的角度辨识度是关键。

AOA示意

4)TOF、TDOA方法,简化理解,就是通过时间进行测量,什么时间呢,是标签与基站之间的信号飞行时间,无线信号的飞行速度近似光速,所以测量精度要求会高。

TOF示意

二、应用特性

由上可知,UWB技术,通常指的是采用TOF、TDOA方法的,蓝牙AOA,字面已可以理解,采用AOA方法。

1)安装特性:

    安装上,UWB整体更优。UWB采用飞行时间且无线频段基于超宽带脉冲波技术,抗干扰性能更优,安装时环境可选择性更宽,而AOA因与角度有关,基站安装要求具备一定高度范围,否则需要安装的基站数量成倍增长。

2)成本特性:

     成本上,蓝牙通常更优。单体硬件成本而言,UWB的标签成本通常为蓝牙标签成本的2~3倍。单体基站成本差异较小。但遇到高度受限场景,蓝牙所需部署基站激增,则整体成本优势可能逆转。

3)维护特性:

     维护上,蓝牙更优,但对于使用者的影响,多数场景差异不大。通常应用于人的,是充电方式,UWB一次可用1~3个月,蓝牙通常用换电方式,一次半年~1年。对于物品,则基本都可做到1~3年。故依据使用场景不同,对于维护的判定则有所偏倚。

4)群体特性:

    群体上,UWB目前更广泛的适用于工业场景,其工业应用保障性也已经受众多案例验证和认可。蓝牙更多使用于商业环境,目前基于手机都具备蓝牙功能,其也有独特的标签(终端)自由特性,部分场景可自然融入消费者。

5)供应关系特性:

    目前国内乃至全球,UWB方案厂商都基于Decawave芯片研发,故产品性能特性上区别有限,更多的区别是基于落地案例经验而优化的算法及整体服务,如WEWILLS众志基于1200+的落地经验,以物联网大平台及贴地气服务根基。蓝牙AOA,目前国内厂家较少,仍处于萌芽阶段,需要更多的落地案例推动厂家丰富化及技术成熟化。

三、全面性

     另,建议除了UWB及蓝牙AOA,可以全面的了解物联网相关技术,在不同的应用场景,采用单技术或多技术特点融合的方式,将会是更好适配需求的不二法宝。以下共享部分分析。

物联网技术对比

从蓝牙的发展历史中,弄清蓝牙mesh的前世今生?思考灵魂三问:从哪来,到哪去,它要干什么。为接下来学习蓝牙mesh做准备。

为什么命名蓝牙呢?这要源于一个小故事,十世纪的丹麦有一位国王叫Harald Blatand,此人口齿伶俐、善于交际。他将挪威、瑞典和丹麦统一了起来。由于他喜欢吃蓝莓,牙龈常常是蓝色的,因此有蓝牙国王之称。设计人员在确定名称时觉得“蓝牙”这个名字极具表现力,而且Blatand国王的个性很符合这项技术的特征,因此使用了“蓝牙”这个名称。蓝牙标志设计取自 Harald Bluetooth 名字中的“H”和“B”蓝牙标志的来历个字母,用古北欧字母来表示,将这两者结合起来,就成为了蓝牙的logo。

野蛮生长阶段

蓝牙的核心是短距离无线电通讯,它的基础来自于跳频扩频(FHSS)技术,由好莱坞女演员 Hedy Lamarr 和钢琴家 George Antheil 在 1942 年 8 月申请的专利上提出。他们从钢琴的按键数量上得到启发,通过使用 88 种不同载波频率的无线电控制鱼雷,由于传输频率是不断跳变的,因此具有一定的保密能力和抗干扰能力。

起初该项技术并没有引起美国军方的重视,直到 20 世纪 80 年代才被军方用于战场上的无线通讯系统,跳频扩频(FHSS)技术后来在解决包括蓝牙、WiFi、3G 移动通讯系统在无线数据收发问题上发挥着关键作用。

20 世纪 80至 90 年代,正值通讯技术爆发的时代,当时多家科技巨头都在研究一种能够将不同设备无线连接在一起的短距离无线通讯技术。

1994 年,JaapHaartsen 完成了该项技术最核心的基带部分, Sven Mattissson 则完成了无线射频部分,加上链接管理(LMP),这3部分构成了该项技术的核心协议层。这就是最早期的蓝牙技术,只是这个时候还不叫蓝牙。

经过漫长的野蛮生长,各种标准层出不穷,所谓分久必合合久必分。

为了方便,不可能每家都用自己的标准,就像充电数据线,市面上两种充电数据线,苹果和安卓,即便如此,也让人感觉头疼。试下一下,如果一个手机厂商,使用一种充电线,将会是一种什么样的场景。蓝牙mesh的标准,诞生也与蓝牙的诞生方式如出一辙。2017年以前,在国内外也是各种自家的蓝牙mesh标准,直到Sig发布正式版才得以统一。

爱立信在 1994 年创制的方案,该方案旨在研究移动电话和其他配件间进行低功耗、低成本无线通信连接的方法。发明者希望为设备间的无线通讯创造一组统一规则(标准化协议),以解决用户间互不兼容的移动电子设备的通信问题,用于替代 RS-232 串口通讯标准。

1996 年12 月,Ericsson,Nokia,Intel,Toshiba 和 IBM决定成立一个特定兴趣小组(SpecialInterestGroup)来统一和维护该项无线通讯技术标准,以便使其能够成为未来的无线通信标准。经过讨论,Intel 负责半导体芯片和传输软件的开发,爱立信负责无线射频和移动电话软件的开发,IBM和东芝负责笔记本电脑接口规格的开发。

1998 年 5 月 20 日,爱立信联合 IBM、英特尔、诺基亚及东芝 5 家著名厂商成立 “特别兴趣小组”(Special Interest Group,SIG) ,即蓝牙技术联盟的前身,目标是开发一个成本低、效益高、可以在短距离范围内随意无线连接的蓝牙技术标准。当年蓝牙推出 07 规格,支持 Baseband 与 LMP(Link Manager Protocol)通讯协定两部分。

1999 年先后推出 08 版、09 版、10 Draft 版。完成了 SDP(Service Discovery Protocol)协定和 TCS(Telephony Control Specification)协定。

1999 年 7 月 26 日正式公布 10A 版,确定使用 24GHz 频段。和当时流行的红外线技术相比,蓝牙有着更高的传输速度,而且不需要像红外线那样进行接口对接口的连接,所有蓝牙设备基本上只要在有效通讯范围内使用,就可以进行随时连接。 任何角度和方向都可以实现数据的交换,就此拉开了蓝牙技术突飞猛进的序幕。

1999 年下半年,苹果、微软、摩托罗拉、三星、朗讯与蓝牙特别小组的五家公司共同发起成立了蓝牙技术推广组织,从而在全球范围内掀起了一股“蓝牙”热潮。

到 2000 年 4 月,SIG 的成员数已超过 1500,其成长速度超过任何其他的无线联盟。截止目前,共有3万6千多家公司成为特别兴趣小组成员。蓝牙协议最新的版本也到了52,于2020年1月7日发布。暂时还没有蓝牙53要发布的消息。

第一代蓝牙:关于短距离通讯早期的探索

1999 年:蓝牙 10

早期的蓝牙 10 A 和 10B 版存在多个问题,有多家厂商指出他们的产品互不兼容。同时,在两个设备“链接”(Handshaking)的过程中,蓝牙硬件的地址(BD_ADDR)会被发送出去,在协议的层面上不能做到匿名,造成泄漏数据的危险。

因此,当 10 版本推出以后,蓝牙并未立即受到广泛的应用。除了当时对应蓝牙功能的电子设备种类少,蓝牙装置也十分昂贵。

2001 年:蓝牙 11

蓝牙 11 版正式列入 IEEE 802151 标准,该标准定义了物理层(PHY)和媒体访问控制(MAC)规范,用于设备间的无线连接,传输率在748~810kb/s。但因为是早期设计,容易受到同频率之间产品干扰,影响通讯质量。

2003 年:蓝牙 12

蓝牙 12 版同样是只有 748~810kb/s 的传输率,但针对 11 版本暴露出的安全性问题,完善了匿名方式,新增屏蔽设备的硬件地址(BD_ADDR)功能,保护用户免受身份嗅探攻击和跟踪,同时向下兼容 11 版。此外,还增加了四项新功能:

AFH(Adaptive Frequency Hopping)适应性跳频技术,减少了蓝牙产品与其它无线通讯装置之间所产生的干扰问题;

eSCO(Extended Synchronous Connection-Oriented links)延伸同步连结导向信道技术,用于提供 QoS 的音频传输,进一步满足高阶语音与音频产品的需求;

Faster Connection 快速连接功能,可以缩短重新搜索与再连接的时间,使连接过程更为稳定快速;

支持 Stereo 音效的传输要求,但只能以单工方式工作。

第二代蓝牙:发力传输速率的 EDR 时

2004 年:蓝牙 20

蓝牙 20 是 12 版本的改良版,新增的 EDR(Enhanced Data Rate)技术通过提高多任务处理和多种蓝牙设备同时运行的能力,使得蓝牙设备的传输率约在18M/s ~ 21M/s。

蓝牙 20 支持双工模式:可以一边进行语音通讯,一边传输文档/高质素。同时,EDR 技术通过减少工作负载循环来降低功耗,由于带宽的增加,蓝牙 20 增加了连接设备的数量。

应用最为广泛的是蓝牙20 + EDR标准,该标准在2004年已经推出,支持蓝牙20 + EDR 标准的产品也于2006年大量出现。虽蓝牙20 + EDR标准在技术上作了大量的改进,但从1X标准延续下来的配置流程复杂和设备功耗较大的问题依然存在。

蓝牙20可以算得上是生不逢时:虽然蓝牙20已经出现,但大部分的手机内还是集成的蓝牙20以下的发射端,导致了兼容性出现问题,所以,也就没有大规模的普及;另外,这也是蓝牙给大家留下不容易匹配的原因。

2007 年:蓝牙 21

蓝牙 21 新增了 Sniff Subrating 省电功能,将设备间相互确认的讯号发送时间间隔从旧版的 01 秒延长到 05 秒左右,从而让蓝牙芯片的工作负载大幅降低。另外,新增 SSP 简易安全配对功能,改善了蓝牙设备的配对体验,同时提升了使用和安全强度。支持 NFC 近场通信,只要将两个内置有 NFC 芯片的蓝牙设备相互靠近,配对密码将通过 NFC 进行传输,无需手动输入。

2007年8月2日,蓝牙技术联盟正式批准了蓝牙21版规范,即“蓝牙21+EDR”,可供未来的设备自由使用。目前这个版本仍然占据蓝牙市场较大份额,相对20版本主要是提高了待机时间2倍以上,技术标准没有根本性变化。

市面上很多蓝牙音箱,大街小巷里面手机支付后的语音播报,就是使用的这个版本标准。通常称作音频蓝牙,在安卓中支持SSP简单安全配对,在iOS端则需要使用MFI认证。

第三代蓝牙:High Speed,传输速率高达 24Mbps

2009 年:蓝牙 30

2009年4月21日蓝牙技术联盟正式颁布蓝牙核心规范30版。蓝牙 30 新增了可选技术 High Speed,High Speed 可以使蓝牙调用 80211 WiFi 用于实现高速数据传输,传输率高达 24Mbps,是蓝牙 20 的 8 倍,轻松实现录像机至高清电视、PC 至 PMP、UMPC 至打印机之间的资料传输(需要双方都达到此标准才能实现功能)。

蓝牙 30 的核心是 AMP(Generic Alternate MAC/PHY),这是一种全新的交替射频技术,允许蓝牙协议栈针对任一任务动态地选择正确射频。

功耗方面,蓝牙 30 引入了 EPC 增强电源控制技术,再辅以 80211,实际空闲功耗明显降低。

第四代蓝牙:主推” Low Energy”低功耗

2010 年:蓝牙 40

蓝牙40规范于2010年7月7日正式发布,新版本的最大意义在于低功耗,同时加强不同厂商之间的设备兼容性,并且降低延迟,理论最高传输速度依然为24Mbps(即3MB/s),有效覆盖范围扩大到100米(之前的版本为10米)。拥有更快的响应速度,最短可在 3 毫秒内完成连接设置并开始传输数据。更安全的技术,使用 AES-128 CCM 加密算法进行数据包加密和认证。

蓝牙 40 是迄今为止第一个蓝牙综合协议规范,将三种规格集成在一起。其中最重要的变化就是 BLE(Bluetooth Low Energy)低功耗功能,提出了低功耗蓝牙、传统蓝牙和高速蓝牙三种模式:

BLE 前身是 NOKIA 开发的 Wibree 技术,本是作为一项专为移动设备开发的极低功耗的移动无线通信技术,在被 SIG 接纳并规范化之后重命名为 Bluetooth Low Energy(后简称低功耗蓝牙)。这三种协议规范还能够互相组合搭配、从而实现更广泛的应用模式。

蓝牙 40 的芯片模式分为 单模(Single mode) 与双模( Dual mode)。Single mode 只能与蓝牙 40 互相传输无法向下与 30/21/20 版本兼容;Dual mode 可以向下兼容 30/21/20 版本。前者应用于使用纽扣电池的传感器设备,例如对功耗要求较高的心率检测器和温度计;后者应用于传统蓝牙设备,同时兼顾低功耗的需求。

2013 年:蓝牙 41

蓝牙41于2013年12月6日发布,与LTE无线电信号之间如果同时传输数据,那么蓝牙41可以自动协调两者的传输信息,理论上可以减少其它信号对蓝牙41的干扰。改进是提升了连接速度并且更加智能化,比如减少了设备之间重新连接的时间,意味着用户如果走出了蓝牙41的信号范围并且断开连接的时间不算很长,当用户再次回到信号范围中之后设备将自动连接,反应时间要比蓝牙40更短。最后一个改进之处是提高传输效率,如果用户连接的设备非常多,比如连接了多部可穿戴设备,彼此之间的信息都能即时发送到接接收设备上。

蓝牙 41 在传输速度和传输范围上变化很小,但在软件方面有着明显的改进。此次更新目的是为了让 Bluetooth Smart 技术最终成为物联网(Internet of Things)发展的核心动力。

允许开发人员和制造商「自定义」蓝牙 41 设备的重新连接间隔,为开发人员提供了更高的灵活性和掌控度。

支持「云同步」。蓝牙 41 加入了专用的 IPv6 通道,蓝牙 41 设备只需要连接到可以联网的设备(如手机),就可以通过 IPv6 与云端的数据进行同步,满足物联网的应用需求。

支持「扩展设备」与「中心设备」角色互换。支持蓝牙 41 标准的耳机、手表、键鼠,可以不用通过 PC、平板、手机等数据枢纽,实现自主收发数据。例如智能手表和计步器可以绕过智能手机,直接实现对话。

2014 年:蓝牙 42

2014年12月4日,最新的蓝牙42标准颁布。蓝牙42标准的公布,不仅改善了数据传输速度和隐私保护程度,还接入了该设备将可直接通过IPv6和6LoWPAN接入互联网。

首先是速度方面变得更加快速。尽管蓝牙41版本已在之前的基础上提升了不少,但远远不能满足用户的需求,同Wi-Fi相比,显得优势不足。而蓝牙42标准通过蓝牙智能(Bluetooth Smart) 数据包的容量(MTU Size)提高,其可容纳的数据量相当于此前的10倍左右,两部蓝牙设备之间的数据传输速度提高了25倍。

其次,隐私保护程度地加强也获得众多用户的好评。我们知道,蓝牙41以及其之前的版本在隐私安全上存在一定的隐患——连接一次之后便无需再确认便自动连接,容易造成隐私泄露。而在蓝牙42新的标准下,蓝牙信号想要连接或者追踪用户设备必须经过用户许可,否则蓝牙信号将无法连接和追踪用户设备。

当然,最令人期待的还是新版本通过IPv6和6LoWPAN接入互联网的功能。早在蓝牙41版本时,蓝牙技术联盟便已经开始尝试接入,但由于之前版本传输率的限制以及网络芯片的不兼容性,并未完全实现这一功能。而据蓝牙技术联盟称,蓝牙42新标准已可直接通过IPv6和6LoWPAN接入互联网。相信在此基础上,一旦可IPv6和6LoWPAN广泛运用,此功能将会吸引更多的关注。

另外不得不提的是,对较老的蓝牙适配器来说,蓝牙42的部分功能将可通过软件升级的方式获得,但并非所有功能都可获取。蓝牙技术联盟称:“隐私功能或可通过固件升级的方式获得,但要视制造商的安装启用而定。速度提升和数据包扩大的功能则将要求硬件升级才能做到。”

而到目前为止,蓝牙40仍是消费者设备最常用的标准,不过Android Lollipop等移动平台已经开始添加对蓝牙41标准和蓝牙42标准的原生支持。

第五代蓝牙:开启「物联网」时代大门

2016 年:蓝牙 50

美国时间2016年6月16日,蓝牙技术联盟(SIG)在华盛顿正式发布了第五代蓝牙技术(简称蓝牙50)。蓝牙50 在低功耗模式下具备更快更远的传输能力,传输速率是蓝牙42 的两倍(速度上限为 2Mbps),有效传输距离是蓝牙42 的四倍(理论上可达 300 米),数据包容量是蓝牙42 的八倍。

支持室内定位导航功能,结合 WiFi 可以实现精度小于 1 米的室内定位。

另外,蓝牙50还允许无需配对接受信标的数据,比如广告、Beacon、位置信息等。同时蓝牙50标准还针对IoT物联网进行底层优化,更快更省电,力求以更低的功耗和更高的性能为智能家居服务。

2019年,SIG推出了蓝牙51新增寻向功能,将蓝牙定位的精准度提升到厘米级,功耗更低、传输更快、距离更远、定位更精准。

2020年1月,蓝牙技术联盟在拉斯维加斯举办的CES2020上发布了其新一代蓝牙音频技术标准——低功耗音频LE Audio。该方案伴随着TWS耳机的爆发而被受关注。因此,有业内人士认为,LE Audio蓝牙标准将再次对终端应用产生重大影响。

Mesh 网状网络:实现物联网的关键”钥匙“

蓝牙技术联盟于2017年7月19日正式宣布,蓝牙(Bluetooth@)技术开始全面支持Mesh网状网络。Mesh 网状网络是一项独立研发的网络技术,它能够将蓝牙设备作为信号中继站,将数据覆盖到非常大的物理区域,兼容蓝牙 4 和 5 系列的协议。

传统的蓝牙连接是通过一台设备到另一台设备的「配对」实现的,建立「一对一」或「一对多」的微型网络关系。

而 Mesh 网络能够使设备实现「多对多」的关系。Mesh 网络中每个设备节点都能发送和接收信息,只要有一个设备连上网关,信息就能够在节点之间被中继,从而让消息传输至比无线电波正常传输距离更远的位置。

这样,Mesh 网络就可以分布在制造工厂、办公楼、购物中心、商业园区以及更广的场景中,为照明设备、工业自动化设备、安防摄像机、烟雾探测器和环境传感器提供更稳定的控制方案。

物联网:未来蓝牙技术的新主场

自 1998 年来,蓝牙协议已经进行了多次更新,从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网数据传输。一方面维持着蓝牙设备向下兼容性,另一方面蓝牙也正应用于越来越多的物联网设备。

随着 Low Energy 版蓝牙在功耗和传输效率上的不断提升,Classic 版本(经典蓝牙,又或音频蓝牙)自 30 后就更新不大。可以预见,未来蓝牙的主要发力点将集中在物联网,而不仅仅局限于移动设备,而 Mesh 网状网络的加入,使得蓝牙自成 IoT 体系成为可能。

据 SIG 的市场报告预估,到 2018 年底,全球蓝牙设备出货量将多达 40 亿,其中:手机、平板和 PC 今年出货量可达 20 亿,音频和娱乐设备出货量可达 12 亿,全球 86% 出厂的汽车将具备蓝牙功能,智能家居蓝牙设备出货量可达 65 亿,智能建筑、智慧城市、智慧工业等均将成为未来潜力赛道。

随着蓝牙 5 技术的出现和蓝牙 mesh 技术的成熟,大大降低了设备之间的长距离、多设备通讯门槛,为未来的 IoT 带来了更大的想象空间。这项 20 年前问世的技术,未来还会焕发出蓬勃的生命力。

无线通信技术是当今网络通信的基础,按照距离,可以分为近距离无线通信和远距离无线通信。近距离无线通信包括WIFI、蓝牙、ZigBee、Z—Wave、NFC、UWB等。远距离无线通信包括LoRa、NB-IoT等。

相比于其他无线技术:红外、无线24G、WiFi来说,蓝牙具有加密措施完善,传输过程稳定以及兼容设备丰富等诸多优点。尤其是在授权门槛逐渐降低的今天,蓝牙技术开始真正普及到所有的数码设备。不过,蓝牙这一路走来也并非完美,从10到50是一个不平凡的过程。

参考资料:

目标是实现万物互联的物联网(英文:Internet of Things,缩写IoT)概念似乎离我们的日常生活较为遥远,而实际上物联网正在不知不觉的渗透进我们生活和工作的方方面面,不仅潜移默化地改变着我们的生活环境,也在悄然变革着互联网产业的格局,孕育着下一个IT产业的霸主!

达宝利销售的Pofit智能工学电脑椅正是座椅产业进行智能化物联网升级的初步尝试。Pofit除采用动态仿生脊椎靠背,同时支撑3节胸椎、5节腰椎、1节骶椎,更好的分散脊椎压力外,另外一个显著的特点就是将智能化的概念引入产品的设计之中。Pofit座椅内置了多个传感器,所搜集的数据通过蓝牙与手机APP相互传输,用户在APP中进行功能设置,享受数据统计、坐姿警示、久坐提醒、评价与建议等服务。

虽然Pofit在智能化融入方面做出了勇敢的尝试,在避免久坐、保持正确坐姿等方面一定程度上满足了用户的深层次需求,但是离真正意义的智能物联还有很大的差距。

不过,Pofit对座椅智能化的有益尝试正在揭示着一股来势汹汹、不可逆转的产业升级趋势:传统产品的智能化与物联网化。

在从互联网向物联网延伸的新时代,传统产业又迎来一次转型升级的难得契机。

可实现智能化的产品没有做不到只有想不到

谈到智能化设备,大家首先想到的是电器、电子产品的智能化,例如电视、热水器、空调、洗衣机、风扇、路由器、抽油烟机、音响、插座、照明等。

但是随着科技的发展,越来越多原本与电毫无关系的传统产品正在加速智能化并接入物联网,例如健康领域出现的心电图手环、血糖仪、体脂秤、胎心仪、血压计、体温计等;安防领域出现的视频监控、防盗报警器、烟雾警报器、红外探测仪、门控、入墙开关、智能锁、智能猫眼等;家用领域出现的美妆镜、净水器、扫地机器人、水壶水杯、办公座椅、升降桌、智能床、窗帘、足浴盆、智能水族、晾衣架、地暖等;甚至原本只是机械的车辆,也在加速智能化并接入物联网,Mercedes me智能车家互联就是其中的一个代表。

我们身边可智能化的传统产品还有很多,没有做不到的智能化,只有想不到的智能化。那么传统产品智能化有什么优势呢?

第一,智能化产品将在传统产品的红海撕杀中跳脱出来,开辟一片广阔的蓝海市场,率先吸引到高端客户的关注。

举个例子:数千年来,扫帚和簸箕是人类清扫地面的主要工具,后来吸尘器面世,分流了一部分客户,近几年来,不受电线束缚的扫地机器人的销量高速增长,可以想象不久的将来,智能化的扫地机器人不断迭代,功能不断完善,清扫甚至拖地的效果越来越好,将不断蚕食扫帚和簸箕的传统产品市场,最终导致传统产品的消亡。

手机替代相机、电子货币替代纸币、微信替代信件和电话、外卖平台替代方便食品、打车软件替代路边叫车、电子商务冲击实体商业……随着科技的爆炸式发展,智能化产品层出不穷,有可能几十年甚至十几年,一种传统产品就由鼎盛转为衰落。传统生产厂家在产品智能化的道路上要避免重蹈“看不见、看不起、看不懂、跟不上”的覆辙。

第二,智能化产品将会通过终端程序搜集到大量用户的使用数据,通过网络及时反馈到研发部门,研发部门利用大数据分析得出结论,确定产品改进方向,开发出更符合客户需求的新产品,加快产品的迭代速度,强化市场竞争力。

第三,智能化产品使厂家可以通过 *** 作终端(APP或小程序)与客户建立高效的一对一的沟通渠道,强化客户管理和营销效果。客户打开物联网终端的时候正是使用产品的时候,也是对厂家的营销信息接受度最高的时候;其效果远强于一个被客户关注却设置为“不接收文章推送”,几乎很少主动打开的微信公众号。

厂家不主动对产品进行智能化改造,就会沦为IT企业的附庸

在传统产品的智能化升级过程中,厂家积累的产品改进经验所起到的效果越来越差,真正起主导作用的是既懂硬件又懂软件的IT公司,它们开发出一套适合某个产业的智能化系统,只需选择生产厂家即可。在智能化新品的利润构成中,IT公司占据了很大一块,行动迟缓的厂家只能沦为低附加值且竞争激烈的代工厂。

而对IT公司而言,传统产品的智能化趋势给它们带来了由“软”变“硬”的机会。只要发挥技术优势,针对一个产品或一个行业研发出一套软硬件结合的智能化解决方案,就可以选择工厂进行代工贴牌,从而走上制造和销售的道路。

小米2011年10月推出第一款手机,以手机品牌的形象亮相。2013年9月第一款小米电视上市,进军电视产业。5年时间过去,2018年小米电视霸榜京东618,销售额7日连续第一;根据奥维云网数据,小米电视出货量进入全球市场前十,中国市场前三;2018年8月,小米宣布“小米电视全渠道销量第一”。我们不管小米电视是否真的是中国第一,但是小米电视仅用五年时间就从局外人做到全球前十,与传统的家电企业相比,如此神速的“小米”显得过于“凶猛”。

小米电视为什么这么“猛”?原因不全在产品质量的优势上,因为小米电视也是厂家代工的,别的电视品牌也能达到同样的质量;再除去商业模式的原因,小米擅长搞预售和饥饿营销,拿到海量的订单后,可以从厂家获得更低的出厂价格,小米电视主要通过电商渠道销售,节省了渠道费用,因此价格更有优势;小米“凶猛”的更深层次的原因在于,它建立了智能互联生态,将电视与主业——手机深度捆绑。小米用智能物联网重新赋能了电视。小米手机的客户因为对小米品牌的认可,为了获得手机与电视互联互通的新鲜体验,更倾向于购买小米电视,同样因为这个原因,米粉们进而会购买小米的空气净化器、空调、路由器、扫地机器人、电水壶等一系列可互通互联的产品,甚至未来的汽车、房产等小米推出的一切产品。

小米崛起的案例为传统厂家转变思路敲响了警钟。传统的商业理论认为“品牌要细分化和专业化,才能保持市场竞争力”,但是这一理论正在受到物联网时代的挑战。因为代工的普通存在,产品在质量和功能上的差异变得越来越小,除品牌影响力外,产品背后的智能物联生态成为影响消费者做出购买决策的重要原因之一。目前小米在电子电器领域逐渐站稳脚跟,正在将触角延伸到以“小米有品”为代表的非电传统产品,不断加速传统产品的智能化和物联网化,进一步强化小米生态产业链。

全球的互联网公司都在变硬,成为软硬一体的公司。国际上有亚马逊、谷歌、微软、脸书等IT公司,国内有百度、阿里、腾讯、小米、京东等IT公司,种种实例都在证明着这一不可逆转的趋势。

如果传统企业不主动实现产品的智能化,掌握研发和产品的主动权,就可能被拥有智能化优势的IT公司捏住七寸,被压在产业链的底端,失去市场话语权。

智能物联平台成为IT大佬的兵家必争之地

传统产品独立进行智能化遇到两个难题。

第一、如果每个产品都独立开发一个APP,种类会有成千上万种,用户也不愿意在手机中下载那些几乎很少用到的APP。也就是智能产品可能被迫“不智能”,仅成为一个被使用的物品。

第二、如果每个产品都需要重新设计硬件模组、配制服务器、开发前端程序,那么智能化的成本会很高。独立开发的智能化产品由于缺少技术和平台的支持,也很难实现真正的物联网化。

产品的智能化和物联网化不是同一个概念。

智能化只要求产品具有感应元器件、执行元器件,通过蓝牙或扫码等方式与手机中的APP或小程序建立数据连接,将感应器采集到的数据反馈到终端程序中,将客户在程序中输入的命令传达到产品中执行。

而物联网化除智能化外,更大的区别在于数据传输和处理方式上的互联网化。在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上任何人都可以在获得许可的前提下,查出它们的具体位置,获得它们采集的数据,并对它们进行控制和管理。物与物之间的连接依靠的是打破地域限制的互联网,而不仅仅是有范围限制的蓝牙连接,或有渠道限制的扫码连接。

传统产品的智能化亟需IT公司提供物联网服务平台和底层的技术支持。

将万物互联的硬件基础、储存运算、终端展现掌握在自己手中,将产生极大的行业影响力和非常丰富的商业模式想象空间,因此智能物联平台成为IT大佬的兵家必争之地。

从国内看,阿里智能为厂商提供包括智能硬件模组、阿里智能云、阿里智能APP在内的一站式设备智能化解决方案。小米IoT开发者平台宣称“将面向智能家居、智能家电、健康可穿戴、出行车载等领域,开放智能硬件接入、智能硬件控制、自动化场景、AI技术、新零售渠道等小米特色优质资源,与合作伙伴一起打造极致的物联网体验。”腾讯推出云小微、叮当、QQ物联等平台相互竞争,选择优势项目扶植。百度内部大力整合成立SLG部门,推出DuerOS对话式人工智能开放平台。华为也推出了HiLink联盟,推出华为智能家居APP。中国BATMJ五大豪门全部参与到智能物联平台的争夺战中。

对于传统厂家来说,从五大豪门中选择一个智能物联平台进行合作,将大大降低产品物联网化的成本和难度。相比之下,阿里、京东、小米各有自己的众筹平台和电商平台,如果厂家选择它们的智能物联平台进行开发,制造出产品原型即可在它们的众筹平台上进行众筹,如果众筹效果不好,对厂家来说仅损失了开发费用和原型制作费用,损失并不大;如果众筹效果好,可批量生产完成交货,收获智能化的第一桶金,并根据用户的反馈进一步优化产品;进而在它们的电商平台上开店销售,解决销售渠道的问题。

IT大佬们不惜耗费重金建立和推广智能物联平台,目的就是建立智能物联生态圈,构建生态影响力。因此它们更愿意谈及连接设备及活跃数量,因为这是生态能力的体现。2018年初,百度DuerOS公开的数据是,连接设备数量达5000万台,日活跃数1000万;小米公布的激活设备数量是1000万量级。

同样,凡是愿意与AMJ智能物联平台深度合作的厂家和产品将得到这些IT巨头的资源倾斜和推广支持,这对厂家来讲是一个非常大的竞争优势,也是许多新公司快速切入行业竞争,崭露头角的捷径之一。

智能音箱是简易物联网的入口,APP才是智能物联网的核心

2017年底,小米推出智能音箱“小爱同学”,此后,阿里推出“天猫精灵”、京东推出“叮咚”,百度推出“小度在家”,腾讯推出“听听”,智能音箱大战如火如荼地展开。

为什么互联网巨头纷纷抢滩智能音箱呢?

因为智能音箱的语音交互功能很有趣,对普通消费者非常有吸引力,能够吸引消费者尝试,而互联网企业的最终的目的是让消费者初步感受到控制物联网上其它相关产品的乐趣,比如用语音控制热水器准备烧水洗澡,用语音控制扫地机器人开始工作,用语音控制灯光开关等,并培养消费者的行为习惯,将消费者留在自己的智能物联生态圈中。

因为语音控制的局限性,只能让客户简单控制联网的少数产品。随着加入智能互联生态的产品的数量和种类急剧增长,语音交互控制只能满足部分需求,成为客户控制联网物品的辅助手段,真正控制数量众多联网产品的有效工具仍是APP。因此正在加速进入千家万户的智能音箱的配套APP将逐步演变成一个智能物联网控制中心,这才是互联网企业争夺的焦点。

智能家居只是初级阶段,智能社会才是物联网的终极方向

智能家居的物联生态是互联网巨头目前争夺的焦点。因为家居产品离人最近,使用频率最高,是促使人们了解和使用物联网的有效途径。但是物联网的壮大不会局限于家居,而是会逐渐渗透到运输物流、机关服务、健康医疗、智能环境等个人和社会的方方面面。

我们畅想一下物联网在未来的应用领域。

在银行里,客户用手机连接到银行服务的物联硬件,可以用手机实现取号,到号提醒和业务办理指引。

在列车上,客户用手机连接到列车上的物联服务硬件,可以浏览列车提供的增值服务,实现呼叫乘务员,购买餐饮、物品,坐等送货等功能。

在旅游景区,客户用手机连接到景区的物联服务硬件,程序可以精准定位客户在景区的位置,在手机中展示相关的多媒体内容,配合语音进行导游讲解。

物联网的应用空间非常广阔。

智能物联的硬件生态链的发展可能威胁到软件生态链的地位

微信已经成为高频社交应用软件,它推出的(附近)小程序服务正在汇集数量众多功能各异的应用。随着5G、云计算时代的到来,微信正在成为软件生态链的入口,拥有更稳固的影响力。

随着IPV6的成熟,128位的IP地址能够让智能物联网连接世界上的每一粒砂子。受固有物联网概念的束缚,我们认为物联网就是对物品数据的获取和指令的下达,但是我们仔细思考,物联网一定要这么使用吗?每个联网的物品,当用户访问它的IP时,完全可以把IP跳转为云端的某个应用程序,变访问物品为访问程序,这样就可以实现前面列举的社会化物联网应用的场景。

一定要在物品的周围用扫码添加、蓝牙配对的方式才能接入物联网吗?并不尽然。物品在物联网上只是一个IP,并通过GPS或所连接的网络显示所在的物理位置。通过物联网背后的智能物联管理平台,用户可以通过IP地址或者位置搜索接入这个物品,从而摆脱物理空间对物联网的限制。

再进一步推演:如果不涉及物品信息的搜集和控制,只是通过物联网的地址去跳转程序,那么物品的实体可以不存在,只需要在物联网上模拟出这个IP和所在的物理位置即可。

经过一系列演变,智能物联管理平台可能演变成一个基于物理位置的程序(含硬件控制)汇集平台,本身的性质和作用与微信的附近小程序十分相似。物联网携海量IP、附近硬件接入提醒、硬件控制等优势,可能会从另外一个层次对微信这样的软件形态应用产生冲击和影响。

如果互联网企业在软件、小程序(云计算)的竞争中未取得领先优势,那么深度开发基于智能物联网的平台和应用,有可能获得一个弯道超车的机会!

在物联网产业中,蓝牙或许是无线通讯应用中最好的选择,原因是基于蓝牙技术受众面广阔,以低功耗、智能化、低成本等特性,在物联网应用市场中占据主要核心位置。目前已被广泛应用于智能家居、智能穿戴设备、消费电子、智慧医疗和汽车设备在内的所有物联网智能产品中。

小尺寸、低功耗、高性能的无线模块为物联网(IoT)带来了无处不在的连接,让传感器数据能够快速的采集更多终端设备数据,并通过透明传输将数据完整的发送到云端、服务器端,让用户能够实时的获得精准的生产、管理数据,并以此为依据,优化整个系统。

蓝牙模块透明传输的基本架构

一、智能门锁:基于BLE蓝牙模块的智能门锁,在现有的电子门锁中,增加低功耗蓝牙模块,用户可以通过智能手机的APP实现对门锁的解锁、控制,无需繁琐的门卡、钥匙,更加智能便捷。适用于居家、酒店、民宿等环境;用户可通过手机APP给房客远程注册,生成打开门锁的密码,通过短信的方式下发到房客的手机;客人可以通过密码打开云锁,进入房间看房或入住,在到达租赁期限后密码失效,房客完成退租和缴费。

二、智能照明:基于BLE蓝牙模块的智能照明,在LED灯中加入BLE蓝牙模块,用户可以通过智能手机的APP实现对LED灯的开关、亮度、颜色以及模式进行控制;可实现一对一,一对多,多对多等控制模式,只需在手机上安装一个APP,即可实现灯光的智能控制更加方便灵活,同时支持遥控器设备。适用于居家、酒店、办公环境、咖啡厅等环境;只要保持LED灯通电,然后配合APP,即可通过智能手机随心控制LED灯,从而实现对LED灯的明暗度,色彩,开关及场景等远程 *** 控。

三、环境探测:基于BLE蓝牙模块的环境探测,内置BLE蓝牙模块的温湿度计,BLE蓝牙模块实时采集温湿度数据,并通过蓝牙网关将数据进行上传,用户可以直接在手机APP上查看数据,并通过手机对家用空气净化器下发调整温度、湿度的控制指令。可实现一对一,一对多等数据采集模式,只需在手机上安装一个APP,即可实现各个房间的温湿度数据采集,及空气调节。适用于家居、商场、博物馆、办公场所、医院、月子中心、养老院等对室内空气有要求的环境。基于BLE蓝牙模块的智能环境探测,通过检测到的数值高与低,自动帮助室内清新空气质量。

四、智能窗帘:基于BLE蓝牙模块的智能窗帘,在传统的窗帘上接入电路,把家用电压转换成直流低电压给BLE蓝牙控制模块供电,通过BLE蓝牙模块控制电路中的电机的工作状态。用户可以通过智能手机的APP实现对窗帘的开、关。适用于家居、办公场所、医院月子中心、养老院等对光线比较敏感的环境。基于BLE蓝牙模块的智能窗帘,通过把电机与轨道相结合,安装更简单, *** 作更简单,外观更漂亮,使用寿命更久远。

BLE蓝牙模块:

青岛有个专门的物联网协会,2011年成立的。青岛的物联网企业总体实力不是太强。除了海尔海信之类的家电企业有相关的业务外,也就是高校软控、东软载波、中科软件、高校信息等为数不多的几个软件企业还算说得过去。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13222005.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-22
下一篇 2023-06-22

发表评论

登录后才能评论

评论列表(0条)

保存