对于问题小孩这门课所学所识有什么启发?

对于问题小孩这门课所学所识有什么启发?,第1张

我做了这么多年幼师,一直在想幼儿园的小孩是否全部都是天真快乐呢?是否全部都能友好相处呢?这些问题一直萦绕在我的心中,直到我读了《幼儿园里的“问题小孩”》,我这个疑惑的云朵才被拨开。
对于《幼儿园里的“问题小孩”》这一本书的总体评价,我认为这是一本基于作者理论学养于实践经验的原创之作,站在一个幼师的角度,我认为要以身作则,去在现实中发现书中存在的“问题”小孩,学会更多的专业知识去辅导孩子的心理,引导他们积极向上,懂得生活的美好。
在书中,论述围绕幼儿园课程的课程价值,分析了幼儿园教学内容有别于其他阶段的特质,从课程与教学的视角,澄清了长期以来幼儿园教育设计中诸多群体性、无意识的错误做法。语言浅白通俗又不失学理思考,虽脱胎于日常的授课讲义,又从读者的阅读心理出发设计了灵动的阅读结构,为职前、职后的幼儿园教师提供了有价值的学习与指导。
书中描述的一个很典型的现象就是幼儿的“隐蔽性”说谎,是指幼儿在特定环境下因为某种原因而隐蔽地说谎,这对刚处在萌芽阶段的幼儿有很不利的影响。由于幼儿“心灵的纯洁”,他们在真实的伪装下说谎时,往往会显得很不自然,对他们心灵的摧残也是显而易见的,因此,教导幼儿学会真诚,多和幼儿熟悉,多听他们的心事,也是我读完这本书的一个很大的感悟。
书中描述的幼儿园中存在的问题小孩主要有下面这八个问题:磨蹭、倔强、叛逆、暴力、吹牛、撒谎、孤僻,这些都是一个人成长中起阻碍的消极面,书中主要描写了从行为规范、心理健康、培养个性、解决叛逆等问题入手,以幼儿园和家长的双角度去更好地描述这本书的主题思想,带给普世大众对幼儿园教育中的解决。其中,书中展现的“榜样模范”也是让我记忆尤深的,一个好的集体需要好的带领人,在幼儿中建立榜样模范,可以让幼儿培养良好的习惯,汲取优秀的品质从而培养真诚善良的性格,良好的学习升高习惯,有益于幼儿集体的发展。
总之,幼儿园里的孩子作为稚嫩的花朵,必然需要社会上人们的关怀,作为幼儿园老师和家长,我们要学会用爱去鼓励孩子,去呵护每一个娇嫩的花朵,使他们寻回自信和坚强,让他们能以更好的姿态去迎接生活中的困难,去呵护每一个幼儿园孩子,培养他们优良的品格,成为国家未来的中流砥柱

5G商用,将迈出关键一步,让很多科幻的场景成为现实。远程传感,只是它将带来的巨大变化中的一个。

以下是几个我认为可能出现的主要变化或创新:

1、沉浸式体验的流行:当条形码升级为二维码后,其承载的信息,瞬间增加了一个量级。所以我们在1G时代,只能听声音;2G时代,可以看短信、彩信和简单上网;3G时代,可以无障碍地看了,基本上可以体验到大部分的网络功能;4G时代,可以直播和看视频。但我们现在从手机上通过4G看到的信息,哪怕是视频,本质上还是在二维平面呈现。而5G的高速度和高带宽,让信息的三维呈现成为可能。

2、远程视频通信、社交和工作:对一些大企业,云视频会议已经比较流行,如很多公司用的zoom系统,但是在大众中并不是很普及。小公司一般也就用用微信的多人视频通话。不过,不管是zoom还是微信,二维图像+声音的显示方式,与面对面交流相比,效果还是相差很远。5G时代,随着设备成本的降低和传输速度的提升,全息3D显示的远程会议模式,将逐渐流行,慢慢成为标配。

3、一切在云端:我们现在看资料、看照片、看视频、玩游戏、用APP,还是习惯于“下载”到电脑或手机上。但我们有没有想过,其实“下载”这个动作,是多余的。我们真正需要的是“使用”,而不是“下载”。只是因为之前网络的容量不够大,读取不够快,所以我们不得不下载下来,利用手机和电脑的性能,帮助使用过程更顺畅。

4、万物互联:现在的智能家居已经逐渐开始流行。我们可以通过手机、SIRI、小爱同学等,控制一些家用电器了。但是这比起5G时代而言,还处于很原始的状态。人类畅想“万物互联”(Internet of Things,简称IoT,又叫物联网),已经有很多年了,但是由于种种限制,其发展不如预想的快,其中一个关键障碍,就是信息的传输和存储效率达不到要求,而5G将使得万物互联大大往前推进一步。

很多的培训机构都会录制比较完整的入门级视频教程提供下载的,单是想要入门的话下载看这些就够了兄弟连Java战狼班,如果要深入的学习可以参考他们列出来的教学提纲去网络搜索
兄弟连JavaEE战狼班:
第一阶段:Java语言基础
★ Java语言基础
1、面向对象思维JAVASE
2、(类加载机制与反射,annotation,泛型,网络编程,多线程,IO,异常处理,常用API,面向对象,JAVA编程基础)
3、Java8新特性
第二阶段:数据库
★ 数据库
1、Oracle(SQL语句、SQL语句原理、SQL语句优化、表、视图
2、序列、索引、Oracle数据字典、Oracle 数据库PL/SQL开发
3、数据库设计原则、 MySQL 、 JDBC
第三阶段:Web基础
★ Web基础
1、HTML5(H5)基本文档结构、链接、列表、表格、表单;
2、CSS 基础语法、盒子模型、浮动布局、定位;
3、JavaScript语言基础、DOM 编程、事件模型等),JQuery,AJAX框架,XML,BootStrap组件
第四阶段:Java Web技术和主流框架
★ Java Web技术和主流框架
1、JSP&Servlet、struts2,hibernate4,spring4,JPA,maven
2、SpringData,SpringMVC,MyBatis,SpringSecurity,shiro,Nginx
第五阶段:Linux
★ Linux
1、Linux安装、熟悉Linux的基础命令、vi编辑器的使用、awk和sed命令使用、用户和组
2、文件及目录权限管理、使用ACL进行高级访问控制、网络配置和软件包安装、启动流程和服务管理
3、系统监控和日志管理、进程管理和计划任务、ssh远程登录、shell基础和shell脚本。
第六阶段:大数据技术(Hadoop和Spark)
★ 大数据技术(Hadoop和Spark)
1、Hadoop (Hadoop基础和环境搭建,HDFS体系结构,MapReduce;Hadoop的集群模式、HDFS联盟,利用ZooKeeper来实现Hadoop集群的HA(高可用性)功能
2、Yarn的任务调度机制,Apache Hive,Pig数据处理,集成Hadoop和Sqoop
3、Flume以及Apache Kafka来实现数据的交换,安装部署HBase,Storm)
4、Scala 语言(Scala环境搭建、Scala基础语法、模式匹配、重载与构造器、Map与reduce、元组、继承、StringContext,Option Some None,Tuple;集合方法和运算,future 对象同步处理和异步处理返回结果)
5、Spark(Spark搭建,Spark-shell 的使用,Spark-submit 提交应用, Spark的内核设计和实现,并对内核中的实现架构、运行原理进行详细的讲解;Spark生态体系中的各个组件,包括:Spark Core,Shark,Spark SQL和Spark Streaming等等)
第七阶段:项目
★ 项目
1、China-UCSP 项目 SSM(Spring+SpringMVC+MyBatis)
2、用户关系管理系统 S2SH+Maven+Nodejs+MySQL技术实战开发
3、电子商务交易平台 S2SH+Maven+Shiro+Oracle

2018节日法定节假日共11天,包括元旦、春节、清明节、劳动节、端午节、中秋节和国庆节。
一、元旦:1月1日放假,与周末连休。
二、春节:2月15日至21日放假调休,共7天。2月11日(星期日)、2月24日(星期六)上班。
三、清明节:4月5日(清明节)4月6日(星期五)4月7日(星期六)放假,共3天,4月8日(星期日)上班。
四、劳动节:4月29日至5月1日放假,共3天,4月28日(星期六)上班。
五、端午节:6月16日至6月18日放假,共3天,与周末连休。
六、中秋节:9月22日至9月24日放假,共3天,与周末连休。
七、国庆节:10月1日至7日放假调休,共7天。9月29号(星期六)、9月30号(星期天)上班。

12 个空间流与 256-QAM 调制。
2 2 个空间流与 256-QAM 调制。
3 3 个空间流与 64-QAM 调制。

Wi-Fi 已成为当今世界无处不在的技术,为数十亿设备提供连接,也是越来越多的用户上网接入的首选方式,并且有逐步取代有线接入的趋势。为适应新的业务应用和减小与有线网络带宽的差距,每一代 80211 的标准都在大幅度的提升其速率。

1997 年 IEEE 制定出第一个无线局域网标准 80211,数据传输速率仅有 2Mbps,但这个标准的诞生改变了用户的接入方式,使人们从线缆的束缚中解脱出来。

随着人们对网络传输速率的要求不断提升,在 1999 年 IEEE 发布了 80211b 标准。80211b 运行在 24 GHz 频段,传输速率为 11Mbit/s,是原始标准的 5 倍。同年,IEEE 又补充发布了 80211a 标准,采用了与原始标准相同的核心协议,工作频率为 5GHz,最大原始数据传输率 54Mbit/s,达到了现实网络中等吞吐量(20Mbit/s)的要求,由于 24GHz 频段已经被到处使用,采用 5GHz 频段让 80211a 具有更少冲突的优点。

2003 年,作为 80211a 标准的 OFDM 技术也被改编为在 24 GHz 频段运行,从而产生了 80211g,其载波的频率为 24GHz(跟 80211b 相同),原始传送速度为 54Mbit/s, 净传输速度约为 247Mbit/s(跟 80211a 相同)。
对 Wi-Fi 影响比较重要的标准是 2009 年发布的 80211n,这个标准对 Wi-Fi 的传输和接入进行了重大改进,引入了 MIMO、安全加密等新概念和基于 MIMO 的一些高级功能 (如波束成形,空间复用),传输速度达到 600Mbit/s。 此外,80211n 也是第一个同时工作在 24 GHz 和 5 GHz 频段的Wi-Fi 技术。

然而,移动业务的快速发展和高密度接入对 Wi-Fi 网络的带宽提出了更高的要求,在2013 年发布的 80211ac 标准引入了更宽的射频带宽(提升至 160MHz)和更高阶的调制技术(256-QAM),传输速度高达 173Gbps,进一步提升 Wi-Fi 网络吞吐量。另外,在 2015 年发布了 80211ac wave2 标准,将波束成形和 MU-MIMO 等功能推向主流,提升 了系统接入容量。但遗憾的是 80211ac 仅支持 5GHz 频段的终端,削弱了 24GHz 频段下的用户体验。

然而,随着视频会议、无线互动 VR、移动教学等业务应用越来越丰富,Wi-Fi 接入终端越来越多,IoT 的发展更是带来了更多的移动终端接入无线网络,甚至以前接入终端较少的家庭 Wi-Fi 网络也将随着越来越多的智能家居设备的接入而变得拥挤。因此 Wi-Fi 网络仍需要不断提升速度,同时还需要考虑是否能接入更多的终端,适应不断扩大的客户端设备数量以及不同应用的用户体验需求。

下一代Wi-Fi 需要解决更多终端的接入导致整个Wi-Fi 网络效率降低的问题,早在2014 年 IEEE 80211 工作组就已经开始着手应对这一挑战, 预计在 2019 年正式推出的80211ax(下个章节介绍为什么叫 Wi-Fi 6)标准将引入上行 MU-MIMO、OFDMA 频分复用、1024-QAM 高阶编码等技术,将从频谱资源利用、多用户接入等方面解决网络容量和传输效率问题。目标是在密集用户环境中将用户的平均吞吐量相比如今的 Wi-Fi 5 提高至少4 倍,并发用户数提升 3 倍以上,因此,Wi-Fi 6(80211ax)也被称为高效无线(HEW)。

Wi-Fi 6 是下一代 80211ax 标准的简称。随着 Wi-Fi 标准的演进,WFA 为了便于 Wi- Fi 用户和设备厂商轻松了解其设备连接或支持的 Wi-Fi 型号,选择使用数字序号来对 Wi- Fi 重新命名。另一方面,选择新一代命名方法也是为了更好地突出 Wi-Fi 技术的重大进步, 它提供了大量新功能,包括增加的吞吐量和更快的速度、支持更多的并发连接等。根据 WFA 的公告,现在的 Wi-Fi 命名分别对应如下 80211 技术标准:

和以往每次发布新的 80211 标准一样,80211ax 也将兼容之前的 80211ac/n/g/a/b 标准,老的终端一样可以无缝接入 80211ax 网络。

4G 是移动网络高速率的代名词,同样,Wi-Fi 6 是无线局域网高速率的代名词,但这个高速率是怎么来的,由以下几个因素决定。

1空间流数量 空间流其实就是 AP 的天线,天线数越多,整机吞吐量也越大,就像高速公路的车道一样,8 车道一定会比 4 车道运输量更大。

表 2 不同 80211 标准对应的空间流数量 2Symbol 与 GI Symbol 就是时域上的传输信号,相邻的两个Symbol 之间需要有一定的空隙(GI),以避免 Symbol 之间的干扰。就像中国的高铁一样,每列车相当于一个 Symbol, 同一个车站发出的两列车之间一定要有一个时间间隙,否则两列车就可能会发生碰撞。不同 Wi-Fi 标准下的间隙也有不同,一般来说传输速度较快时 GI 需要适当增大,就像同一车道上两列 350KM/h 时速的高铁发车时间间隙要比时速 250KM/h 时速的高铁发车间隙要大一些。

表 3 80211 标准对应的 Symbol 与GI 数据
3编码方式 编码方式就是调制技术,即 1 个 Symbol 里面能承载的 bit 数量。从 Wi-Fi 1 到 Wi-Fi 6,每次调制技术的提升,都能至少给每条空间流速率带来 20%以上的提升。

表 4 80211 标准对应的 QAM 4码率 理论上应该是按照编码方式无损传输,但现实没有这么美好。传输时需要加入一些用于纠错的信息码,用冗余换取高可靠度。码率就是排除纠错码之后实际真实传输的数据码占理论值的比例。

表 5 80211 标准对应的码率 5有效子载波数量 载波类似于频域上的 Symbol,一个子载波承载一个 Symbol,不同调制方式及不同频宽下的子载波数量不一样。

表680211 标准对应的子载波数量
至此,我们可以计算一下 80211ac 与 80211ax 在 HT80 频宽下的单条空间流最大速率:

Wi-Fi 6(80211ax)继承了Wi-Fi 5(80211ac)的所有先进 MIMO 特性,并新增了许多针对高密部署场景的新特性。以下是Wi-Fi 6 的核心新特性:

下面详细描述这些核心新特性。

图 2-1 OFDM 工作模式 80211ax 中引入了一种更高效的数据传输模式,叫 OFDMA(因为 80211ax 支持上下行多用户模式,因此也可称为 MU-OFDMA),它通过将子载波分配给不同用户并在OFDM 系统中添加多址的方法来实现多用户复用信道资源。迄今为止,它已被许多无线技术采用,例如 3GPP LTE。此外,80211ax 标准也仿效 LTE,将最小的子信道称为“资源单位(Resource Unit,简称 RU)”,每个 RU 当中至少包含 26 个子载波,用户是根据时频资源块 RU 区分出来的。我们首先将整个信道的资源分成一个个小的固定大小的时频资源块 RU。在该模式下,用户的数据是承载在每一个 RU 上的,故从总的时频资源上来看,每一个时间片上,有可能有多个用户同时发送(如下图)。

图 2-2 OFDMA 工作模式 OFDMA 相比 OFDM 一般有三点好处:

图 2-3 不同子载波频域上的信道质量

因为 80211ac 及之前的标准都是占据整个信道传输数据的,如果有一个 QOS 数据包需要发送,其一定要等之前的发送者释放完整个信道才行,所以会存在较长的时延。在OFDMA 模式下,由于一个发送者只占据整个信道的部分资源,一次可以发送多个用户的数据,所以能够减少 QOS 节点接入的时延。

表 7不同频宽下的 RU 数量

图 2-4RU 在 20MHz 中的位置示意图 RU 数量越多,发送小包报文时多用户处理效率越高,吞吐量也越高,下图是仿真收益:

图 2-5 OFDMA 与 OFDM 模式下多用户吞吐量仿真

图 2-6 SU-MIMO 与 MU-MIMO 吞吐量差异

图 2-7 8x8 MU-MIMO AP 下行多用户模式调度顺序

图 2-8 多用户模式上行调度顺序 虽然 80211ax 标准允许OFDMA 与 MU-MIMO 同时使用,但不要 OFDMA 与 MU- MIMO 混淆。OFDMA 支持多用户通过细分信道(子信道)来提高并发效率,MU-MIMO 支持多用户通过使用不同的空间流来提高吞吐量。下表是 OFDMA 与 MU-MIMO 的对比:

表 8 OFDMA 与 MU-MIMO 对比

图 2-9 256-QAM 与 1024-QAM 的星座图对比 需要注意的是 80211ax 中成功使用 1024-QAM 调制取决于信道条件,更密的星座点距离需要更强大的 EVM(误差矢量幅度,用于量化无线电接收器或发射器在调制精度方面的性能)和接受灵敏度功能,并且信道质量要求高于其他调制类型。

图 2-10 80211 默认 CCA 门限
例如图 12,AP1 上的 STA1 正在传输数据,此时,AP2 也想向 STA2 发送数据,根据Wi-Fi 射频传输原理,需要先侦听信道是否空闲,CCA 门限值默认-82dBm,发现信道已被STA1 占用,那么 AP2 由于无法并行传输而推迟发送。实际上,所有的与 AP2 相关联的同信道客户端都将推迟发送。引入动态 CCA 门限调整机制,当 AP2 侦听到同频信道被占用时,可根据干扰强度调整 CCA 门限侦听范围(比如说从-82dBm 提升到-72dBm),规避干扰带来的影响,即可实现同频并发传输。

图 2-11 动态 CCA 门限调整 由于 Wi-Fi 客户端设备的移动性,Wi-Fi 网络中侦听到的同频干扰不是静态的,它会随着客户端设备的移动而改变,因此引入动态 CCA 机制是很有效的。80211ax 中引入了一种新的同频传输识别机制,叫 BSS Coloring 着色机制,在 PHY 报文头中添加 BSS color 字段对来自不同BSS 的数据进行“染色”,为每个通道分配一种颜色,该颜色标识一组不应干扰的基本服务集(BSS),接收端可以及早识别同频传输干扰信号并停止接收,避免浪费收发机时间。如果颜色相同,则认为是同一 BSS 内的干扰信号, 发送将推迟;如果颜色不同,则认为两者之间无干扰,两个 Wi-Fi 设备可同信道同频并行传输。以这种方式设计的网络,那些具有相同颜色的信道彼此相距很远,此时我们再利用动态CCA 机制将这种信号设置为不敏感,事实上它们之间也不太可能会相互干扰。

图 2-12 无BSS Color 机制与有BSS Color 机制对比

图 2-13 Long OFDM symbol 与窄带传输带来覆盖距离提升

前面的几大核心技术已经足够证明 80211ax 带来的高效传输和高密容量,但80211ax 也不是 Wi-Fi 的最终标准,这只是高效无线网络的开始,新标准的 80211ax 依然需要兼容老标准的设备,并考虑面向未来物联网络、绿色节能等方向的发展趋势。以下是 80211ax 标准的其他新特性:

下面详细描述这些新特性。

我们都知道 24GHz 频宽窄,且仅有 3 个 20MHz 的互不干扰信道(1,6 和 11),在 80211ac 标准中已经被抛弃,但是有一点不可否认的是 24GHz 仍然是一个可用的 Wi-Fi 频段,在很多场景下依然被广泛使用,因此,80211ax 标准中选择继续支持 24GHz,目的就是要充分利用这一频段特有的优势。

无线通信系统中,频率较高的信号比频率较低的信号更容易穿透障碍物,而频率越低, 波长越长,绕射能力越强,穿透能力越差,信号损失衰减越小,传输距离越远。虽然 5GHz 频段可带来更高的传播速度,但信号衰减也越大,所以传输距离比 24GHz 要短。因此,我们在部署高密无线网络时,24GHz 频段除了用于兼容老旧设备,还有一个很大的作用就是边缘区域覆盖补盲。

现阶段仍有数以亿计的 24GHz 设备在线使用,就算如今成为潮流的 IoT 网络设备也使用的 24GHz 频段,对有些流量不大的业务场景(如电子围栏、资产管理等),终端设备非常多,使用成本更低的仅支持 24GHz 的终端是一个性价比非常高的选择。

图 2-14 广播目标唤醒时间 *** 作

为什么要 Wi-Fi 6(80211ax)

80211ax 设计之初就是为了适用于高密度无线接入和高容量无线业务,比如室外大型公共场所、高密场馆、室内高密无线办公、电子教室等场景。

图 3-1 高密高带宽应用场景 在这些场景中,接入Wi-Fi 网络的客户端设备将呈现巨大增长,另外,还在不断增加的语音及视频流量也对 Wi-Fi 网络带来调整,根据预测,到 2020 年全球移动视频流量将占移动数据流量的 50%以上,其中有 80%以上的移动流量将会通过 Wi-Fi 承载。我们都知道 4K 视频流(带宽要求 30Mbps/人)、语音流(时延小于 30ms)、VR 流(带宽要求 50Mbps/人,时延 10~20ms)对带宽和时延是十分敏感的,如果网络拥塞或重传导致传输延时,将对用户体验带来较大影响。而现有的Wi-Fi 5(80211ac)网络虽然也能提供大带宽能力,但是随着接入密度的不断上升,吞吐量性能遇到瓶颈。而Wi-Fi 6 (80211ax)网络通过 OFDMA、UL MU-MIMO、1024-QAM 等技术使这些服务比以前更可靠,不但支持接入更多的客户端,同时还能均衡每用户带宽。比如说电子教室,以前如果是 100 多位学生的大课授课形式,传输视频或是上下行的交互挑战都比较大,而80211ax 网络将轻松应对该场景。

5G 与 Wi-Fi 6(80211ax)的共存关系

这不是一个新颖的话题,在 1999 年~2000 年间,就有人提出 2G 将替代 Wi-Fi 的观点;2008 年~2009 年也出现了 4G 将代替 Wi-Fi 的猜测;现在又有人开始讨论 5G 代替 Wi- Fi 的话题了。可是,5G 与 Wi-Fi 的应用场景模式是不相同的。Wi-Fi 主要用于室内环境, 而 5G 则是一种广域网技术,它在室外的应用场景更多。所以我们相信 Wi-Fi 和 5G 将长期共存下去。我们从以下几个角度进一步分析:

假设 5G 技术取代 Wi-Fi,那么就必须推出无限流量的套餐,否则费用会远远大于宽带的使用的费用,更何况目前宽带的价格一年比一年低,谁也不会去选择更贵的 5G。在目前的 4G 时代无限流量的套餐就是个噱头,三大运营商都纷纷推出过无限流量的套餐,当时流量超出套餐的流量之后,网络会自动将为 2G 模式,最高速度只有 128Kbps,这个速度看视频不如看漫画,因此所谓的无限流量只是个无稽之谈。

5G 网络技术采用的是超高频频谱(5G 网络频段: 24GHz~52GHz;4G 网络频段:18GHz~26GHz,不包括 24GHz),前面已经提到,频率越高衍射现象越弱,穿越障碍的 能力也就越弱,所以 5G 信号是很容易衰弱的。如果保持 5G 信号的覆盖需要比 4G 建设更多的基站。而且由于信号的衰减,如果在大楼的内部,隔着几道墙,信号衰减就更加严重了。 再有个极端的例子就是地下室,Wi-Fi 网络可以将路由器通过有线连接放入地下室产生信号, 但是 5G 网络是不可能覆盖到所有大楼的地下室的,单就这一个弊端,5G 也无法取代 Wi- Fi。另外,现在几乎所有智能设备都有 Wi-Fi 模块,大多数物联网设备也配备了 Wi-Fi 模块, 出口只用一个公网 IP 地址,局域网内部占用大量地址也没关系,用户在自己的 Wi-Fi 网络下管理这些设备都很方便,而用 5G 势必会占用更多公网的 IP 地址。

带宽 x 频谱效率 x 终端数量 = 总容量。

5G 的优点在于它的载波聚合技术,提升了频谱利用率,大大提升了网络容量。在 3G/4G 时代,当用户在人群密集的场所如地铁、车站等地方使用手机上网时,可以明显感觉到上网延迟变大,网速变慢。而在 5G 时代,随着网络容量大幅提升上述现象带来的影响明显降低。也正是这样的特性,让人们觉得 5G 网络下可以无限量接入,但很多人忽视了一点,那就是随着物联网时代的到来,入网设备的数量也在大幅提升,如果真的所有的上网设备都直连区域内的基站,这条 5G 高速路再宽也得堵死啊!而要想降低基站塔的负担,就必须依靠Wi-Fi 来做分流。

移动设备厂商宣传的 5G 最重要的 3 个特征是高速度、大容量、低时延,其实最新一代的 Wi-Fi 速率比 5G 还要快,最新的 80211ax(Wi-Fi 6)单流峰值速率 12Gbps(5G 网络峰值速率 1Gbps),平均来看,Wi-Fi 每升级一代所用的时间大约只是移动网络的一半左右,所以从最新的Wi-Fi 6 开始,速率会持续领先于移动网络。

办公、物流、商业、智能家居等各行各业都在走向无线化,首先要做的就是把设备、人员、终端等全部联网使用。假设 5G 替代了 Wi-Fi 的存在,那么未来的所有联网终端都需要配备一张类似手机 SIM 卡的东西才可以上网。这一个理由也注定了目前在室内场景 5G 是不可能取代Wi-Fi 的。类似的设备还有 VR、游戏机、电子阅读器、机顶盒等等……

大家都知道手机、pad 等移动终端都是用的电池,大家通常都认为电池的耐用性与安装的业务,和使用频率有关,但人们往往忽略了一点,终端的各种移动信号接入质量好与差也 与电池耗电量有关。当信号变差时,移动终端为了确保给用户提供一个良好的体验,会自动增加发射功率来提升信号质量,这就导致电池耗电量增加。由于 Wi-Fi 的信号源基本是在室内范围,而 5G 信号在室外几十公里外的基站,这样就导致移动终端上传数据时,Wi-Fi 的传送距离远远小于 5G 信号。通常情况下 5G 的通信距离是 Wi-Fi 的几千倍以上,这样就需要手机的信号发射强度大大增加,这就增加了耗电量。曾经有人做过实验,以 4G 为例,使用网络数据半小时,Wi-Fi 会比移动网络节省 5%的电量。另外,最新一代的 Wi-Fi 6 (80211ax)支持 TWT 功能,可以在业务需要时自动唤醒,在业务不适用时自动休眠,进一步节省了电量。

因此,目前所面临的这些问题使得 5G 还无法彻底取代 Wi-Fi,更多的是与 Wi-Fi 进行深度融合,因此使用 Wi-Fi 的企业和用户并不用过于慌张。今天的 Wi-Fi 已不再是一个提供无线网络的设备,更多的应该被视为企业数字化转型的必备设施或中央枢纽。例如目前绝大部分的智慧零售、智慧物流、智慧办公等解决方案的中央枢纽就是 Wi-Fi 网络。

参考:
关于WiFi 6技术,这篇说得最详细
不同的 Wi-Fi 协议和数据速率
HZ (物理单位


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13266429.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-29
下一篇 2023-06-29

发表评论

登录后才能评论

评论列表(0条)

保存