为什么在5G初期不能实现打电话功能?

为什么在5G初期不能实现打电话功能?,第1张

5G是4G通讯的升级一代,是第五代通讯技术其速度是4G的百倍,网络发展的趋势肯定需要5G,5G对于网络发展的重要性相当于需要发展地区的高速公路,只有最基础的高速道路通畅了,才能有更进一步的发展,各行各业都是一些发展都需要把底层建筑打好打牢靠,5G到来后网络速度加快,物联网的发展就更大空间,包括智能设备更加智能。

就在2019年中旬,联通与中兴通讯在深圳实现了全球首例基于3GPP最新协议的5G手机的外场通话,还实现了在5G网络下进行了其他手机应用的展示。这个是一个突破性的发展,网友不禁有疑问,说5G通话技术不是很早就开始测试了吗,关注科技消息的朋友可能看过移动和爱立信也表示打通了全球首个5G对话,5G的标准很多,全球还在为哪个5G技术协议作为统一的标准在争论投票的事情,可以说各家技术公司都在测试上有了突破的成绩,比如早在去年四月中兴通讯在广州测试成功端到端5G商用系统的外场站点技术,这款技术是基于3GPP r15的标准,九月爱立信和高通公司宣布打通了符合3GPP标准的无线电毫米波的5G电话。

这次联通在广州打通的5G电话是最新的5G标准,才算得上全球真正的首例,这是5G手机终端的成功对接,表示5G时代或许会提前来到普通用户的身边。

各家科技企业都在针对5G标准来制定智能网络设备产品,包括5G手机,5G公交车,5G机器人等等,对广大科技公司是一次全新的起步机会,不能在5G时代落下,一旦落后就错失更大的机遇。5G多久能够让广大用户用上呢?2019年就会陆续推出5G手机,已经有地区开通了5G套餐,就等5G出来了,但是今年还不是普及的时候,最迟明年也就是2020年会全面普及。

5G到底是什么?

5G的全称是第五代移动通信技术(5th generation mobile networks),

1G(语音通话):第一代(1G)于20世纪70年代末推出,80年代初投入使用。1G网络是利用模拟信号使用类似AMPS和TACS等标准在分布式基站(托管在基站塔上)网络之间“传递”蜂窝用户。

2G(消息传递):在20世纪90年代,2G移动网络催生出第一批数字加密电信,提高了语音质量、数据安全性和数据容量,同时通过使用GSM标准的电路交换来提供有限的数据能力。

3G(有限数据:多媒体、文本、互联网):20世纪90年代末和21世纪初,3G网络通过完全过渡到数据分组交换,引入了具有更快数据传输速度的3G网络,其中一些语音电路交换已经是2G的标准,这使得数据流成为可能,并在2003年推出了第一个商业3G服务,包括移动互联网接入、固定无线接入和视频通话。

4G和LTE(真实数据:动态信息接入,可变设备):4G充分利用全IP组网,并完全依赖分组交换,数据传输速度是3G的10倍。由于4G网络的大带宽优势和极快的网络速度提高了视频数据的质量。LTE网络的普及为移动设备和数据传输设定了通信标准。

而5G相比于4G则增加了高速率、泛在网、低功耗、低时延的特点,从而具备超大网络容量,提供千亿设备的连接能力,满足物联网通信。目前,5G时代定义了以下三大应用场景:

eMBB:增强移动宽带,顾名思义是针对的是大流量移动宽带业务;

URLLC:超高可靠超低时延通信,例如无人驾驶等业务(3G响应为500ms,4G为50ms,5G要求05ms);

mMTC:大连接物联网,针对大规模物联网业务;

而5G标准则被分成了分成了R15、R16两大阶段,其中R15又分为三部分,R15 NR NSA(新空口非独立组网)标准2017年12月完成,R15 NR SA(新空口独立组网)标准2018年6月完成,后边的5G Late Drop于今年6月份冻结,而R16标准完成时间则要到2020年6月,到那个时候,5G所有标准才算完成。R15标准主要是5G组网方式,而R16主要是面向智慧工厂、无人驾驶等垂直领域应用。

如今完成的R15阶段的NSA和SA一直被人所广泛热议。

为什么会有NSA也就是非独立组网出现呢?不同于以往2G/3G/4G整体演进,5G时代核心网、基站被分开了,所以就多出了多种组合方式。R15 Late Drop标准也是为 NSA 增加了更多的组合方式,可以令移动运营商可以更便捷部署5G网络,主要是增加NSA非独立组网模式,转换为5G作为核心网,增加了5G基站为主,4G基站为辅;或者4G基站为主,5G基站为辅两种状况。此外还支持NR-NR双连接,意思就是手机同时连接到两个不同频段上,低频作为覆盖层,高频充当扩容层,既保证了信号覆盖又能提高传输速率。

目前商用的5G手机中只有华为手机支持SA组网,SA组网是未来发展趋势,但并不代表NSA是假5G,目前中国运营商很多都是用的NSA,5G的发展是由NSA向SA过渡的。明年所有手机都会支持NSA/SA,建议大家明年再买!

5G两大方案:Sub-6G和毫米波

5G的建设方式有独立组网和非独立组网两种,那你想要建设什么样的5G,其实也有两种,也就是我们说的5G两大方案:Sub-6G和毫米波。

这两种方案是根据5G所使用的不同频谱来划分的,频谱是频率谱密度的简称,手机通讯信号传输都是通过一定频率传输的。

根据2017年12月发布的 V1500版TS 38104规范,5G NR的频率范围分别定义为不同的FR:FR1与FR2。第一种(FR1)的重心放在6GHz以下的电磁(EM)频谱上(“低到中频段频谱”,也称为“Sub-6”),主要在3GHz 和4 GHz频段。第二种FR2侧重于24~300GHz之间的频段(“高频频谱”或“毫米波”)。

5G NR的频段号以“n”开头,与LTE的频段号以“B”开头不同。目前3GPP指定的5G NR频段如下:

① FR1(Sub-6GHz)范围内:

② FR2(毫米波)范围内:

波长较短的毫米波会产生较窄的波束,从而为数据传输提供更好的分辨率和安全性,且速度快、数据量大,时延小。其次,有更多的毫米波带宽可用,不仅提高了数据传输速度,还避免了低频段存在的拥堵(在研究毫米波频率应用在5G之前,该频段的主要运用在雷达和卫星业务)。5G毫米波生态系统需要大规模的基础建设,但可以获得比4G LTE网络高20倍的数据传输速度。

高通在MWC的展示中,通过运用毫米波技术,达到了463Gbps的网络传输速率,这是一个在4G时代无法想象的快速。

但受制于无线电波的物理特性,毫米波的短波长和窄光束特性让信号分辨率、传输安全性以及传输速度得以增强,但传输距离大大缩减。

根据谷歌对于相同范围内、相同基站数量的5G覆盖测试显示,采用毫米波部署的5G网络,100Mbps速率的可以覆盖116%的人口,在1Gbps的速率下可以覆盖39%的人口;而采用Sub-6频段的5G网络,100Mbps速率的网络可以覆盖574%的人口,在1Gbps的速率下可以覆盖212%的人口。

谷歌测试结果对比,上为毫米波覆盖,下为Sub-6覆盖

可以看到,在Sub-6下运营的5G网络覆盖率是毫米波5倍以上。而且建设毫米波基站,需要大约在电线杆上安装1300万个,将花费4000亿美元,如此才能保证28GHz频段下以每秒100 Mbps速度达到72%的覆盖率、每秒1Gbps的速度达到大约55%的覆盖率。而Sub-6只需要在原有4G基站上加装5G基站即可,大大节省了部署成本。

目前因为美国政府尤其是军方将大量3-4GHz范围内的频段用于军用通信和国防通讯,迫使美国只能选择押注毫米波。

中国选择押注Sub-6G,按3GPP关于5G的频谱范围规范,联通、电信舍弃了之前的频谱资源,换来了目前产业成熟度最高的35GHz资源(3400MHz-3500Mhz分配给中国电信,3500MHz-3600MHz分配给中国联通);移动则在26GHz频段和49GHz频段上持续深耕。

另外,中国虽然押注Sub-6G,但是并没有放弃对毫米波的探索,充分贯彻了鸡蛋不放在一个篮子里的理念。

中美5G建设状况

刚才我们说道,美国5G毫米波存在缺陷,所以目前Sub-6G中的3Ghz和4Ghz之间的频谱波段主导了全球的5G活动,因为相比于毫米波频谱,3Ghz和4Ghz的传播范围得到了改善,能用更少的基站数量提供相同的覆盖范围和性能。

而中国也成为了全球5G的领先者,并且有望成为5G全球经济的领导者,构建5G全球标准:

中国计划部署第一个广泛使用的5G网络,其首批Sub-6网络服务将于2020年投入使用。先发优势可能会推动智能手机和电信设备供应商以及国内半导体和系统供应商的市场大幅增长。因此,中国的互联网公司将为其国内市场开发基于5G速度和低延迟性能的服务和应用程序。随着5G在全球以类似的频段部署,中国的智能手机和互联网应用及服务很可能占据主导地位,即便它们被美国市场排除在外。中国在5G领域的发展,将重现美国在4G领域的辉煌。

在海外,中国一直在与国家和外国公司保持合作,以扩大其5G的影响力。在欧洲,尽管美国官员要求盟友阻止中国公司,华为和中兴仍然正在为个别国家的5G网络提供建设的服务,并签署了多项5G合同。此外,中国在“一带一路”计划中投入了大量时间和资源,包括推动中国建设的网络基础设施,以提供跨越整个路线的连通性。这一策略已经取得了一些成功:在2018年第三季度,华为在全球通信设备市场占有28%的份额,比2015年上升了4个百分点。随着更多地区的5G网络依赖中国通信设备推出,预计华为的市场份额将继续增长。这些努力将使中国能够推广其首选的5G网络标准和规范,并将在未来主导全球的5G产品市场。

而美国还在思考如何完全解决毫米波的缺陷,目前美国试图通过大规模MIMO和波束赋型改善毫米波的传播效率。

大规模MIMO是一种天线阵列,它将极大地扩展设备连接数和数据吞吐量,并将使基站能够容纳更多用户的信号,并显著提高网络的容量(假设存在多个用户射频路径)。波束赋型是一种识别特定用户的技术,该技术可以最有效的把数据传递给特定用户并减少附近用户的干扰。虽然这些技术可以改善毫米波的传播效率,但是在更大范围内保持连接稳定仍然存在挑战。在将毫米波作为一种更通用的无线网络解决方案部署之前,还需要投入大量的时间和研发成本来解决毫米波的传播特性问题。

除此之外,美国还在思考是否要转投Sub-6G方案,跟着中国走。

加速在美国进行5G 6 Sub-6 GHz的部署。向复杂的多频段收发器添加新频段大约需要两年时间,美国将能够通过利用市场上已有的子组件和设备来实现更成熟的频谱使用,例如使用现有的高通产品来实现中国5G系统使用的频段,从而避免花费额外的时间来弥补追赶这两年在5G研究上的落后。

然而即使通过共享频谱的方式,也需要花费5年:

想要允许Sub-6频段的商用,可以重新规划政府的频段或者共享这些频段,但这两个方式的时间都相对过长。清除频谱占用(将现有的用户和系统迁移到频谱的其他部分),然后通过拍卖、直接分配或其他方法将其释放到民用部门所花费的平均时间通常在10年以上。共享频谱是一个稍微快一点的过程,因为它不需要对现有的用户进行彻底的改革,但即使是这样,也要花费5年以上的时间。

可以说目前美国已经陷入了5G的困局之中,而中国在5G的发展上正走得十分稳健。工信部近日表示,目前各地所推进的基本上为非独立组网的5G网络,预计明年我国正式大规模投入建设独立组网的5G网络。

中国信息通信研究院的《5G产业经济贡献》认为,预计2020至2025年,我国5G商用直接带动的经济总产出达106万亿元,间接拉动的经济总产出约248万亿元,5G将直接创造超过300万个就业岗位。

最为重要的是,中国将可能成为全球5G的领导者,重现美国在4G时代的全球经济主导权。

数据来源:美国国防部国防创新委员会发布了《5G生态系统:对美国国防部的风险与机遇》(《THE 5G ECOSYSTEM: RISKS & OPPORTUNITIES FOR DoD》)报告

目前市场上的室内定位产品都是基于无线通信技术的,室内定位常用的定位方案,从技术上来说,主要分为WiFi定位技术、惯性导航技术、蓝牙技术、RFID技术、红外技术、超声波技术、超宽带技术、LED可见光技术。且已广泛的应用在室内导航、移动支付、店内导购、人流分析、物品跟踪等等所有与人在室内流动相关的活动之中。

室内定位技术众多,各种技术都有自己的局限性,彼此间又在一定程度上存在互相竞争。作为用户,肯定是更倾向于选择满足定位精度的同时,整体方案实施难度更小,成本更可控的室内定位方案。要怎么选择适合的室内定位方案呢?在这里,小编就来分享两点,希望看到的室内定位工程师们能够迅速掌握室内定位方案选择技巧。

从定位精度看:从室内定位方案对比图中,我们可以很清楚的看到各个定位方案的定位精度是有差别的,如果您的实际应用中,需要达到厘米级定位精度,显然,超宽带UWB室内定位方案更能满足需求;如果实际应用中,定位精度只要达到米级即可,就可以选择蓝牙室内定位方案。

从实际应用看:以蓝牙室内定位方案为例,基于蓝牙技术室内定位方案可分为蓝牙信标方案和蓝牙网关方案,怎么选择?很简单,您实际应用中是要实现定位功能,还是导航功能。蓝牙信标方案(VG01/VG02)也就是我们常说的终端侧定位方案,需要依靠手机才能够知道位置,属于主动定位,能够实现室内环境内的导航服务;蓝牙网关方案(TD03/TD05/TD05A)也就是我们常说的网络测定位方案,旨在让别人知道所在的位置,属于被动定位,在很大程度上能够满足室内资产的定位需求。

随着中国5G商用牌照的发放,中国的三大运营商已经开始自己的5G网络建设。按照目前的计划,在2019年三大运营商大概会建设约15万的5G基站。

不过5G基站的建设,也遇到了5G基站价格贵,耗电高,选址难的问题。相比4G基站建设,5G基站由于无线频谱更高,边缘速率要求更高,则需要建设更多的基站。

目前来看,5G基站选址难,入场难,部分业主、物业索要高额的入场费,建站协调费的问题,依然是未来5G建设需要解决的难点问题。

而且,5G由于对传输资源要求更高,则需要运营商对现在的城域网、骨干网进行大规模的改造工程,这在需要运营商投入大量的资金的同时,也加大了5G组网的工程难度。

5G基站由于性能更高,目前的耗电是要远高于4G基站的,按照目前的情况来看,5G基站的用电问题也将是运营商不得不面对的一个问题,这个或许需要政府给出相对5G更优惠的电价,如果按照现在的电价来说,运营商建设的起5G,也很难维护的起5G基站。

5G还需要引入更多的小基站来完成热点区域、室内区域的覆盖,这将使得运营商必须面对更多的选址问题,这部分的难度其实是更大的。

其实就现在联通和电信提出的全面建设5G无线接入网,也正是由于5G建设和维护需要的资金太多,建设难度太大。总而言之,目前预计是2020年5G可以有地市级以上的城区覆盖,而5G的全国覆盖,将会是一个长期的过程。

雷达(Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键之一;信号处理器是雷达具有多功能能力的核心组件之一。
雷达种类很多,可按多种方法分类:
(1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。
(2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。
(3)按辐射种类可分为:脉冲雷达和连续波雷达。
(4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段雷达。
(5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。

畜牧业的管理系统、汽车防盗和无钥匙开门系统的应用、 马拉松赛跑系统的应用、自动停车场收费和车辆管理系统、自动加油系统的应用、酒店门锁系统的应用、门禁和安全管理系统、智能物流管理系统。

射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围从300KHz~300GHz之间。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。

每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。

扩展资料

工作原理

系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去。

系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。

无线射频识别系统的读写距离是一个很关键的参数。目前,长距离无线射频识别系统的价格还很贵,因此寻找提高其读写距离的方法很重要。

影响射频卡读写距离的因素包括天线工作频率、阅读器的 RF 输出功率、阅读器的接收灵敏度、射频卡的功耗、天线及谐振电路的 Q 值、 天线方向、 阅读器和射频卡的耦合度,以及射频卡本身获得的能量及发送信息的能量等。大多数系统的读取距离和写入距离是不同的,写入距离大约是读取距离的 40%~80%。

参考资料来源

百度百科-射频

中国知网-射频技术的应用


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13427661.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-03
下一篇 2023-08-03

发表评论

登录后才能评论

评论列表(0条)

保存