浅谈电力通信与泛在电力物联网技术的应用与发展

浅谈电力通信与泛在电力物联网技术的应用与发展,第1张

0引言

随着我国 社会 经济的快速发展, 社会 与企业对电力服务的需求逐渐增加,分布式发电设备与电网结构得到了快速发展,传统的电网形态已无法满足当前 社会 的发展需要。随着 5G 通信在各大领域中的广泛推广,电网的运营模式与功能必然会得到了新一轮的发展方向,因此结合当前电力通信技术,将电力系统与泛在电力物联网结合形成未来电力能源体系是电力系统发展的重要趋势与方向。因此当前国家电网因重视泛在电力物联网技术发展内容,探讨技术模式与出现的问题,这将有利于进一步扩大电力的服务范围与能力。

1泛在电力物联网的概念

11泛在电力物联网的概念

泛在物联网通常是指在任何时间地点、人员与物质之间信息的有机互联与交互,而泛在电力物联网则具体指的是电力用户、电力企业与供应商和设备之间的信息互联交互。可以说泛在电力物联网就是在电力系统中应用互联网技术,实现不同信息传感设备之间的资源共享,从而实现能够自我感知标识的智能处理实体,通过实体间的交互与连接使得有关数据信息能够得到感知与反馈控制,进而形成整体的电力生产体系。而泛在电力物联网通信可以使电力平台架构上通过智能通讯技术实现不同数据信息之间的共享与管理,这将提高数据和信息的利用效率,同时也有利于数据信息之间的交互与连接。通过不同设备用户在任意时空与范围内的信息的共享与交互实现对电力整体运营的稳定,并有利于能源服务平台的在电力市场中得到进一步发展。

12泛在电力物联网的发展目标

泛在电力物联网建设目标主要有利于充分发挥当前物联网大数据的技术优势,充分的包络不同数据和类型的电力信息,增强数据的空间尺度和来源范围,统一分析与挖掘数据的深度与内容。这将有利于电力数据服务针对不同的区域打破数据之间的兼容性,实现各类业务之间的贯通,将电力数据更好的服务于各个行业中,通过 社会 各类行业的广泛参与实现商业模式的建立与发展。以人工智能和深度学习为特征的大数据智能技术将促进电力物联网的快速发展同时也有利于数据知识的挖掘与学习。可以预见未来将促进整体行业的发展与进步。

2泛在电力物联网的基本架构

通常来讲泛在电力物联网的基本架构主要分为三个方面:技术架构、标准架构与应用架构。就技术架构而言,主要分为感知、网络、平台与应用 4 个层面。感知层面主要完成数据信息的协同采集。通过边缘计算使得终端设备的智能化得到了广泛提高。网络层则主要利用现代通信技术实现不同的电力环节之间的覆盖与连接。平台层则主要用于物联网数据信息的管理与不同云端的协同作用。而应用层则主要用于提高整体系统的稳定性,使得能源系统之间构建综合智能的互联网体系。

标准架构则主要为整体的数据平台提供标准支撑,在感知层面会使设备产生不同环节之间的大量数据。这些数据往往来源与格式均不相同。如果没有完善的标准体系,数据之间将很难相互沟通与连接。因此为了解决数据之间的统一与通信,建立了统一的平台标准将促进数据的使用利用情况,为数据信息的深度挖掘提供准备与保障。泛在电力物联网的应用架构,主要用于保障整体电网的运行,提高能源的综合服务能力,并且通过经济的市场运营得到良好的能源生态体系。

3电力通信技术在泛在电力物联网的发展

泛在电力物联网是以通讯技术为基础发展而来的新型物联网体系,其构建的核心是满足电网能源系统的智能判断和自适应调节能力,这将提高能源的替代和利用能力。对于电力物联网来说,通讯技术是其核心的技术内容之一,也是实现万物互联基本的组成单元,凡在电力物联网可以保证不同类型的通讯网络进行相互的连接与反馈,当前电力通信技术的快速发展,泛在电力物联网必然将得到进一步的发展。

31电力通信基本原理

从 2G 通讯技术发展开始,移动通讯技术都以数字信号作为通讯的基础模式。对于 5G 通讯来说,也将以数字信号作为通讯的基础。简单来说,移动通讯的概念就是利用电磁波在空气中自由传播与通讯实现信号的传输。就其组成部件而言,主要包括有:信号发生器、 接收器、调制解调器等关键步骤单元。在空气中无限通讯必然将面对反射散射等各种传输情况,5G 通讯也不例外。5G 通讯相较于 4G 通信而言实现了巨大的飞跃。从提高传输信号的角度来说,主要包括三个方面内容:1扩展资源,增加了电磁波信号频率。2沿延拓定理,提升了频率的使用效率。3开发技术,物质密度更加密集。可实现频率资源多次重复使用,进而得到密度更高的异质网络连接。

32 5G通信基本特征

5G 通讯至少要包括以下 5 个基本特征:高速率、高容量、高可靠性、低时延与低能耗。

1高速率。5g 通讯的速率主要包括有峰值速率,区域速率与边缘速率三个方面的指标。具体来讲,峰值速率指的是在好的条件下得到的速率。区域速率指的是通讯系统整体所保障的总速率。边缘速率是指差的 5%用户所得到的通讯速率。高速率的基本特征使得 5G 通讯技术将在物联系统中得到广泛的应用。

2高容量。相较于传统的通讯技术 5G 通讯将包括有更多的设备终端。这里不止只有手机,也包括有家用电器、各种穿戴设备等。这也为物联网的发展提供了巨大的物理支撑。

3高可靠性。电力通信可靠性是电力系统的首要保障。5G 通讯能够保障信息传输的整体可靠,为电力通讯提供可靠的技术保障。

4低时延。通常来讲,通信时延就是指信息在传输过程中所需要的时间。对于传统技术而言,由于时间影响很大。所以往往被忽视。在未来通信技术发展的情景下必然要求时延性更好的通讯方式,进而满足各种系统之间的协同配合与控制。

5低能耗。在传感器与通讯设备之间往往需要基本的电力供应。新的 5G 技术,将节约能源损耗,降低能源的浪费。

4安科瑞为国家电网2021泛在电力物联网建设提供解决方案

安科瑞电气深耕用户侧能效管理多年,逐渐完善了从电力物联网云平台到终端传感器的生态体系,在“源(电源)-网(电网)-荷(负荷)-储(储能)”各个环节加大研发投入,已经形成“云(云平台)-管(有线/无线物联)-边(边缘计算)-端(终端设备)”的生态系统,参与泛在电力物联网建设,为国家电网建设“三型两网”提供解决方案,使用户在任何时间、地点、人、物之间实现信息连接和交互,产生共享数据,从而为电网、发电、供应商、用户服务。

41云平台

安科瑞电气近年来已经陆续推出变电所运维云平台、能源管理云平台、智慧用电云平台、环保用电监管云平台、充电桩(电动 汽车 /自行车)运营管理云平台、预付费管理云平台等云平台解决方案等解决方案,并已经广泛应用在多地国网公司用户端业务、环保部门、安监部门、住建部门等。

411变电所运维云平台

据统计全国高供高计的工商业用户数量达到200多万户,规模巨大,但是大部分日常的运行维护工作比较传统,普遍存在人力成本高、工作效率低、故障抢修时间长、风险预防薄弱等问题。国网公司和众多电力运维公司正在抢占这块巨大的市场,这是一个千亿级别的市场。

AcrelCloud-1000电力运维云平台采用多功能电力仪表、无线通信、边缘计算网关及大数据分析技术,通过智能网关采集现场数据并存储在本地,再定时向云平台推送数据。平台可同时接入数以千计的用户变电站数据。平台采集的数据包括变电所电气参数和环境数据,包括电流电压功率、开关状态、变压器温度、环境温湿度、浸水、烟雾、视频、门禁等信息,有异常发生10S内通过短信和APP发出告警信号。平台通过手机APP下发运维任务到指定人员手机上,并通过GPS跟踪运维执行过程进行闭环,提高运维效率,即时发现运行缺陷并做消缺处理。

412能源管理云平台

Acrelcloud-5000能耗管理云平台可适用于各个行业,如政府办公建筑、工厂、教育建筑、医疗建筑、商业综合体等,可通过局域网、互联网或者4G网络采集不同区域多个建筑或单位的用能数据。

平台采集建筑电、水、气、冷热量等能源消耗数据和光伏、风力、储能等新能源数据,对用能数据进行分析,按照区域、部门、用电设备类型进行细分,提供同比、环比分析比较和用能数据追溯,同时可以提供尖峰平谷各时段用能数据和报表,帮助用户梳理能源账单明细和制定能源绩效考核。

413环保用电监管云平台

近年来我们的环境质量有了很大的改善,这都归功于国家层面对环保的重视和环保部门的有力监察执法。安科瑞针对环保监察的痛点研发了环保用电监管系统解决方案,助力环保部门坚决打赢蓝天碧水保卫战。

Acrelcloud-3000环保用电监管平台主要为环保监察部门和产污排污企业服务,为环保部门提供在线监管和执法依据,为生产企业提供设备运行监控和产污排污数据记录。

平台采集生产企业总用电量、生产用电和治污设备用电量,进行关联分析,及时给出环保设备异常运行信号或企业异常生产信号,实现全过程防控。前端设备采用不停电免接线方案采集用电数据,经LORA无线上传到环保数据网关,再通过4G上传平台服务器或县、市、省级环保平台。各地环保部门通过污染防治设施用电实时监控,实现对排污企业生产运行无死角、全流程监控,达到变人防为信息化技防,从事后处罚到介入式执法,扭转传统依靠人力、经验进行现场核查的状态,为环保监管开辟更加切实、有效的监管方式,形成长效机制。

414智慧用电云平台

据应急管理部网站数据,2016~2018年期间因为电气原因导致的火灾占总数的百分之三十到百分之三十四左右,其中2018年全国共接报火灾237万起,因违反电气安装使用规定引发的火灾占总数的百分之三十四,较大和重大火灾事故中,电气火灾的比例更高。国务院、公安部消防局以及各省市自治区直辖市纷纷出台文件推广智慧用电,从源头上预防电气火灾的发生,现用电管理平台已在九小场所、三合一场所、养老福利院、医疗场所、学校、金融网点等人员密集场所广泛开展。

安科瑞Acrelcloud-6000用电管理云平台对电气引发火灾的主要因素(线缆温度、漏电电流、负荷电流、电压)进行不间断的数据跟踪与统计分析,通过2G/NB-IOT/4G方式采集现场数据,实时发现电气线路和用电设备存在的隐患(如:线缆温度异常、过载、过压、欠压及漏电等)并通过短信、APP推送、自动语音呼叫等方式及时预警,有效防止电气火灾的发生。系统可以显示所有监测点位的漏电电流等电气参数和线缆温度,并支持巡检记录和派单 *** 作,提供隐患分析报告,实时评估企业用电状态。

415电动 汽车 /电瓶车充电桩运营管理云平台

电动 汽车 现已成为广泛使用的绿色能源交通工具,Acrelcloud-9000充电桩运营管理云平台系统通过物联网技术对接入系统的充电桩站点和各个充电桩进行不间断地数据采集和监控,同时对各类故障如充电机过温保护、充电机输入输出过压、欠压、绝缘检测故障等一系列故障进行预警;用户通过微信小程序扫描二维码,进行支付后,系统发起充电请求,控制二维码对应的充电桩完成电动 汽车 的充电过程。充电桩可选配WIFI模块或GPRS模块接入互联网,配合加密技术和秘钥分发技术,基于TCP/IP的数据交互协议,与云端进行直连。

电动自行车数量越来越多,解决了老百姓短距离出行问题,但是和电动自行车相关的和火灾事故新闻也屡见不鲜,有逐年增长的趋势,给 社会 带来了很大的损失,成为人民生命和财产的一个隐患。基于电动自行车火灾的危害和特点,各级政府部门发文对电动自行车火灾的整治都放在规范停放和充电行为上。安科瑞Acrelcloud-9500充电桩运营管理云平台,针对电动自行车火灾治理提供充电管理、资产管理和交易管理的一揽子解决方案,解决充电难、管理难和收费难的问题,可应用于商业楼宇、小区、学校、医院等场所设置的电动自行车充电场所的运营管理。

416物业小区预付费管理云平台

安科瑞远程预付费系统可以针对各商业综合体、小区、写字楼、办公楼、酒店式公寓等物业,学校、工厂宿舍的后勤管理部门以及连锁超市、大型物业分布式财务 *** 作,在线支付,总部财务扎口等。目前Acrelcloud-3000预付费管理系统已经成功在上述各场景得到广泛的应用并已经稳定运行多年,适用于物业公司对小区、办公和商铺租户的水电预付费管理,或者学校对学生宿舍的用电预付费和用电管控系统。

42有线/无线物联

安科瑞根据多年来的项目经验,结合用户实际需求,开发了各类有线、区域无线、广域无线通讯产品,包括网关和终端设备。支持RS485、以太网、LORA、ZigBee、GPRS、4G、NB-IOT等多种通讯方式,随着5G建设步伐的加快,未来将会有越来越多的通讯方式融入产品,服务于泛在电力物联网建设。

43边缘计算

安科瑞针对物联网应用开发了多款智能网关,采用嵌入式系统和边缘计算技术,现场采集和存储终端设备数据,并根据云平台的需要,采用不同的协议和云平台对接。所有数据采集、计算、异常报警触发逻辑均在网关就地设置,网络故障时数据存储在本地,网络恢复后补传数据,断点续传,提高数据可靠性。

44终端设备

针对泛在电力物联网的建设,安科瑞陆续推出多款物联网仪表,应用在不同场合以满足不同需求,2019年全年各类终端仪表出货量超过185万台。

45安科瑞产品在泛在电力物联网的应用

近两年来,安科瑞已经陆续参与江苏省部分县市电力公司的用户端能源管理平台、云南省网综合能源服务平台、上海嘉定区147所学校电力运维平台等相关平台的建设,提供了包括云平台、智能网关、终端设备等产品,各类用户端云平台在全国各地运行案例700多套,并且根据用户需求不断完善产品功能,这些项目就是未来泛在电力物联网的一部分。

“能源互联网的春天到了,因其所能,它必将成为充满活力的新型能源业态。”尽管针对泛在电力物联网还有一些不同的声音,但是泛在电力物联网已经悄无声息的铺开来,融入能源互联网基础建设的方方面面。

5电力通信与泛在电力物联网建设的展望

51 通信电力网网络间的优化发展

52 多元化的商业模式

随着电力通技术在泛在电力物联网中的应用,将扩大整体电力系统的商业模式。新的商业模式必然会随着市场条件而产生,这有利于解决电力系统长期以来传统商业模式的很多问题。其中实现个人与个人之间的能源交易将成为可能。随着电力通信技术将端对端通信技术实现为 P2P 的交易模式,降低整体交易的通讯成本,有利于泛在电力物联网系统的进一步发展与优化。

12 个空间流与 256-QAM 调制。
2 2 个空间流与 256-QAM 调制。
3 3 个空间流与 64-QAM 调制。

Wi-Fi 已成为当今世界无处不在的技术,为数十亿设备提供连接,也是越来越多的用户上网接入的首选方式,并且有逐步取代有线接入的趋势。为适应新的业务应用和减小与有线网络带宽的差距,每一代 80211 的标准都在大幅度的提升其速率。

1997 年 IEEE 制定出第一个无线局域网标准 80211,数据传输速率仅有 2Mbps,但这个标准的诞生改变了用户的接入方式,使人们从线缆的束缚中解脱出来。

随着人们对网络传输速率的要求不断提升,在 1999 年 IEEE 发布了 80211b 标准。80211b 运行在 24 GHz 频段,传输速率为 11Mbit/s,是原始标准的 5 倍。同年,IEEE 又补充发布了 80211a 标准,采用了与原始标准相同的核心协议,工作频率为 5GHz,最大原始数据传输率 54Mbit/s,达到了现实网络中等吞吐量(20Mbit/s)的要求,由于 24GHz 频段已经被到处使用,采用 5GHz 频段让 80211a 具有更少冲突的优点。

2003 年,作为 80211a 标准的 OFDM 技术也被改编为在 24 GHz 频段运行,从而产生了 80211g,其载波的频率为 24GHz(跟 80211b 相同),原始传送速度为 54Mbit/s, 净传输速度约为 247Mbit/s(跟 80211a 相同)。
对 Wi-Fi 影响比较重要的标准是 2009 年发布的 80211n,这个标准对 Wi-Fi 的传输和接入进行了重大改进,引入了 MIMO、安全加密等新概念和基于 MIMO 的一些高级功能 (如波束成形,空间复用),传输速度达到 600Mbit/s。 此外,80211n 也是第一个同时工作在 24 GHz 和 5 GHz 频段的Wi-Fi 技术。

然而,移动业务的快速发展和高密度接入对 Wi-Fi 网络的带宽提出了更高的要求,在2013 年发布的 80211ac 标准引入了更宽的射频带宽(提升至 160MHz)和更高阶的调制技术(256-QAM),传输速度高达 173Gbps,进一步提升 Wi-Fi 网络吞吐量。另外,在 2015 年发布了 80211ac wave2 标准,将波束成形和 MU-MIMO 等功能推向主流,提升 了系统接入容量。但遗憾的是 80211ac 仅支持 5GHz 频段的终端,削弱了 24GHz 频段下的用户体验。

然而,随着视频会议、无线互动 VR、移动教学等业务应用越来越丰富,Wi-Fi 接入终端越来越多,IoT 的发展更是带来了更多的移动终端接入无线网络,甚至以前接入终端较少的家庭 Wi-Fi 网络也将随着越来越多的智能家居设备的接入而变得拥挤。因此 Wi-Fi 网络仍需要不断提升速度,同时还需要考虑是否能接入更多的终端,适应不断扩大的客户端设备数量以及不同应用的用户体验需求。

下一代Wi-Fi 需要解决更多终端的接入导致整个Wi-Fi 网络效率降低的问题,早在2014 年 IEEE 80211 工作组就已经开始着手应对这一挑战, 预计在 2019 年正式推出的80211ax(下个章节介绍为什么叫 Wi-Fi 6)标准将引入上行 MU-MIMO、OFDMA 频分复用、1024-QAM 高阶编码等技术,将从频谱资源利用、多用户接入等方面解决网络容量和传输效率问题。目标是在密集用户环境中将用户的平均吞吐量相比如今的 Wi-Fi 5 提高至少4 倍,并发用户数提升 3 倍以上,因此,Wi-Fi 6(80211ax)也被称为高效无线(HEW)。

Wi-Fi 6 是下一代 80211ax 标准的简称。随着 Wi-Fi 标准的演进,WFA 为了便于 Wi- Fi 用户和设备厂商轻松了解其设备连接或支持的 Wi-Fi 型号,选择使用数字序号来对 Wi- Fi 重新命名。另一方面,选择新一代命名方法也是为了更好地突出 Wi-Fi 技术的重大进步, 它提供了大量新功能,包括增加的吞吐量和更快的速度、支持更多的并发连接等。根据 WFA 的公告,现在的 Wi-Fi 命名分别对应如下 80211 技术标准:

和以往每次发布新的 80211 标准一样,80211ax 也将兼容之前的 80211ac/n/g/a/b 标准,老的终端一样可以无缝接入 80211ax 网络。

4G 是移动网络高速率的代名词,同样,Wi-Fi 6 是无线局域网高速率的代名词,但这个高速率是怎么来的,由以下几个因素决定。

1空间流数量 空间流其实就是 AP 的天线,天线数越多,整机吞吐量也越大,就像高速公路的车道一样,8 车道一定会比 4 车道运输量更大。

表 2 不同 80211 标准对应的空间流数量 2Symbol 与 GI Symbol 就是时域上的传输信号,相邻的两个Symbol 之间需要有一定的空隙(GI),以避免 Symbol 之间的干扰。就像中国的高铁一样,每列车相当于一个 Symbol, 同一个车站发出的两列车之间一定要有一个时间间隙,否则两列车就可能会发生碰撞。不同 Wi-Fi 标准下的间隙也有不同,一般来说传输速度较快时 GI 需要适当增大,就像同一车道上两列 350KM/h 时速的高铁发车时间间隙要比时速 250KM/h 时速的高铁发车间隙要大一些。

表 3 80211 标准对应的 Symbol 与GI 数据
3编码方式 编码方式就是调制技术,即 1 个 Symbol 里面能承载的 bit 数量。从 Wi-Fi 1 到 Wi-Fi 6,每次调制技术的提升,都能至少给每条空间流速率带来 20%以上的提升。

表 4 80211 标准对应的 QAM 4码率 理论上应该是按照编码方式无损传输,但现实没有这么美好。传输时需要加入一些用于纠错的信息码,用冗余换取高可靠度。码率就是排除纠错码之后实际真实传输的数据码占理论值的比例。

表 5 80211 标准对应的码率 5有效子载波数量 载波类似于频域上的 Symbol,一个子载波承载一个 Symbol,不同调制方式及不同频宽下的子载波数量不一样。

表680211 标准对应的子载波数量
至此,我们可以计算一下 80211ac 与 80211ax 在 HT80 频宽下的单条空间流最大速率:

Wi-Fi 6(80211ax)继承了Wi-Fi 5(80211ac)的所有先进 MIMO 特性,并新增了许多针对高密部署场景的新特性。以下是Wi-Fi 6 的核心新特性:

下面详细描述这些核心新特性。

图 2-1 OFDM 工作模式 80211ax 中引入了一种更高效的数据传输模式,叫 OFDMA(因为 80211ax 支持上下行多用户模式,因此也可称为 MU-OFDMA),它通过将子载波分配给不同用户并在OFDM 系统中添加多址的方法来实现多用户复用信道资源。迄今为止,它已被许多无线技术采用,例如 3GPP LTE。此外,80211ax 标准也仿效 LTE,将最小的子信道称为“资源单位(Resource Unit,简称 RU)”,每个 RU 当中至少包含 26 个子载波,用户是根据时频资源块 RU 区分出来的。我们首先将整个信道的资源分成一个个小的固定大小的时频资源块 RU。在该模式下,用户的数据是承载在每一个 RU 上的,故从总的时频资源上来看,每一个时间片上,有可能有多个用户同时发送(如下图)。

图 2-2 OFDMA 工作模式 OFDMA 相比 OFDM 一般有三点好处:

图 2-3 不同子载波频域上的信道质量

因为 80211ac 及之前的标准都是占据整个信道传输数据的,如果有一个 QOS 数据包需要发送,其一定要等之前的发送者释放完整个信道才行,所以会存在较长的时延。在OFDMA 模式下,由于一个发送者只占据整个信道的部分资源,一次可以发送多个用户的数据,所以能够减少 QOS 节点接入的时延。

表 7不同频宽下的 RU 数量

图 2-4RU 在 20MHz 中的位置示意图 RU 数量越多,发送小包报文时多用户处理效率越高,吞吐量也越高,下图是仿真收益:

图 2-5 OFDMA 与 OFDM 模式下多用户吞吐量仿真

图 2-6 SU-MIMO 与 MU-MIMO 吞吐量差异

图 2-7 8x8 MU-MIMO AP 下行多用户模式调度顺序

图 2-8 多用户模式上行调度顺序 虽然 80211ax 标准允许OFDMA 与 MU-MIMO 同时使用,但不要 OFDMA 与 MU- MIMO 混淆。OFDMA 支持多用户通过细分信道(子信道)来提高并发效率,MU-MIMO 支持多用户通过使用不同的空间流来提高吞吐量。下表是 OFDMA 与 MU-MIMO 的对比:

表 8 OFDMA 与 MU-MIMO 对比

图 2-9 256-QAM 与 1024-QAM 的星座图对比 需要注意的是 80211ax 中成功使用 1024-QAM 调制取决于信道条件,更密的星座点距离需要更强大的 EVM(误差矢量幅度,用于量化无线电接收器或发射器在调制精度方面的性能)和接受灵敏度功能,并且信道质量要求高于其他调制类型。

图 2-10 80211 默认 CCA 门限
例如图 12,AP1 上的 STA1 正在传输数据,此时,AP2 也想向 STA2 发送数据,根据Wi-Fi 射频传输原理,需要先侦听信道是否空闲,CCA 门限值默认-82dBm,发现信道已被STA1 占用,那么 AP2 由于无法并行传输而推迟发送。实际上,所有的与 AP2 相关联的同信道客户端都将推迟发送。引入动态 CCA 门限调整机制,当 AP2 侦听到同频信道被占用时,可根据干扰强度调整 CCA 门限侦听范围(比如说从-82dBm 提升到-72dBm),规避干扰带来的影响,即可实现同频并发传输。

图 2-11 动态 CCA 门限调整 由于 Wi-Fi 客户端设备的移动性,Wi-Fi 网络中侦听到的同频干扰不是静态的,它会随着客户端设备的移动而改变,因此引入动态 CCA 机制是很有效的。80211ax 中引入了一种新的同频传输识别机制,叫 BSS Coloring 着色机制,在 PHY 报文头中添加 BSS color 字段对来自不同BSS 的数据进行“染色”,为每个通道分配一种颜色,该颜色标识一组不应干扰的基本服务集(BSS),接收端可以及早识别同频传输干扰信号并停止接收,避免浪费收发机时间。如果颜色相同,则认为是同一 BSS 内的干扰信号, 发送将推迟;如果颜色不同,则认为两者之间无干扰,两个 Wi-Fi 设备可同信道同频并行传输。以这种方式设计的网络,那些具有相同颜色的信道彼此相距很远,此时我们再利用动态CCA 机制将这种信号设置为不敏感,事实上它们之间也不太可能会相互干扰。

图 2-12 无BSS Color 机制与有BSS Color 机制对比

图 2-13 Long OFDM symbol 与窄带传输带来覆盖距离提升

前面的几大核心技术已经足够证明 80211ax 带来的高效传输和高密容量,但80211ax 也不是 Wi-Fi 的最终标准,这只是高效无线网络的开始,新标准的 80211ax 依然需要兼容老标准的设备,并考虑面向未来物联网络、绿色节能等方向的发展趋势。以下是 80211ax 标准的其他新特性:

下面详细描述这些新特性。

我们都知道 24GHz 频宽窄,且仅有 3 个 20MHz 的互不干扰信道(1,6 和 11),在 80211ac 标准中已经被抛弃,但是有一点不可否认的是 24GHz 仍然是一个可用的 Wi-Fi 频段,在很多场景下依然被广泛使用,因此,80211ax 标准中选择继续支持 24GHz,目的就是要充分利用这一频段特有的优势。

无线通信系统中,频率较高的信号比频率较低的信号更容易穿透障碍物,而频率越低, 波长越长,绕射能力越强,穿透能力越差,信号损失衰减越小,传输距离越远。虽然 5GHz 频段可带来更高的传播速度,但信号衰减也越大,所以传输距离比 24GHz 要短。因此,我们在部署高密无线网络时,24GHz 频段除了用于兼容老旧设备,还有一个很大的作用就是边缘区域覆盖补盲。

现阶段仍有数以亿计的 24GHz 设备在线使用,就算如今成为潮流的 IoT 网络设备也使用的 24GHz 频段,对有些流量不大的业务场景(如电子围栏、资产管理等),终端设备非常多,使用成本更低的仅支持 24GHz 的终端是一个性价比非常高的选择。

图 2-14 广播目标唤醒时间 *** 作

为什么要 Wi-Fi 6(80211ax)

80211ax 设计之初就是为了适用于高密度无线接入和高容量无线业务,比如室外大型公共场所、高密场馆、室内高密无线办公、电子教室等场景。

图 3-1 高密高带宽应用场景 在这些场景中,接入Wi-Fi 网络的客户端设备将呈现巨大增长,另外,还在不断增加的语音及视频流量也对 Wi-Fi 网络带来调整,根据预测,到 2020 年全球移动视频流量将占移动数据流量的 50%以上,其中有 80%以上的移动流量将会通过 Wi-Fi 承载。我们都知道 4K 视频流(带宽要求 30Mbps/人)、语音流(时延小于 30ms)、VR 流(带宽要求 50Mbps/人,时延 10~20ms)对带宽和时延是十分敏感的,如果网络拥塞或重传导致传输延时,将对用户体验带来较大影响。而现有的Wi-Fi 5(80211ac)网络虽然也能提供大带宽能力,但是随着接入密度的不断上升,吞吐量性能遇到瓶颈。而Wi-Fi 6 (80211ax)网络通过 OFDMA、UL MU-MIMO、1024-QAM 等技术使这些服务比以前更可靠,不但支持接入更多的客户端,同时还能均衡每用户带宽。比如说电子教室,以前如果是 100 多位学生的大课授课形式,传输视频或是上下行的交互挑战都比较大,而80211ax 网络将轻松应对该场景。

5G 与 Wi-Fi 6(80211ax)的共存关系

这不是一个新颖的话题,在 1999 年~2000 年间,就有人提出 2G 将替代 Wi-Fi 的观点;2008 年~2009 年也出现了 4G 将代替 Wi-Fi 的猜测;现在又有人开始讨论 5G 代替 Wi- Fi 的话题了。可是,5G 与 Wi-Fi 的应用场景模式是不相同的。Wi-Fi 主要用于室内环境, 而 5G 则是一种广域网技术,它在室外的应用场景更多。所以我们相信 Wi-Fi 和 5G 将长期共存下去。我们从以下几个角度进一步分析:

假设 5G 技术取代 Wi-Fi,那么就必须推出无限流量的套餐,否则费用会远远大于宽带的使用的费用,更何况目前宽带的价格一年比一年低,谁也不会去选择更贵的 5G。在目前的 4G 时代无限流量的套餐就是个噱头,三大运营商都纷纷推出过无限流量的套餐,当时流量超出套餐的流量之后,网络会自动将为 2G 模式,最高速度只有 128Kbps,这个速度看视频不如看漫画,因此所谓的无限流量只是个无稽之谈。

5G 网络技术采用的是超高频频谱(5G 网络频段: 24GHz~52GHz;4G 网络频段:18GHz~26GHz,不包括 24GHz),前面已经提到,频率越高衍射现象越弱,穿越障碍的 能力也就越弱,所以 5G 信号是很容易衰弱的。如果保持 5G 信号的覆盖需要比 4G 建设更多的基站。而且由于信号的衰减,如果在大楼的内部,隔着几道墙,信号衰减就更加严重了。 再有个极端的例子就是地下室,Wi-Fi 网络可以将路由器通过有线连接放入地下室产生信号, 但是 5G 网络是不可能覆盖到所有大楼的地下室的,单就这一个弊端,5G 也无法取代 Wi- Fi。另外,现在几乎所有智能设备都有 Wi-Fi 模块,大多数物联网设备也配备了 Wi-Fi 模块, 出口只用一个公网 IP 地址,局域网内部占用大量地址也没关系,用户在自己的 Wi-Fi 网络下管理这些设备都很方便,而用 5G 势必会占用更多公网的 IP 地址。

带宽 x 频谱效率 x 终端数量 = 总容量。

5G 的优点在于它的载波聚合技术,提升了频谱利用率,大大提升了网络容量。在 3G/4G 时代,当用户在人群密集的场所如地铁、车站等地方使用手机上网时,可以明显感觉到上网延迟变大,网速变慢。而在 5G 时代,随着网络容量大幅提升上述现象带来的影响明显降低。也正是这样的特性,让人们觉得 5G 网络下可以无限量接入,但很多人忽视了一点,那就是随着物联网时代的到来,入网设备的数量也在大幅提升,如果真的所有的上网设备都直连区域内的基站,这条 5G 高速路再宽也得堵死啊!而要想降低基站塔的负担,就必须依靠Wi-Fi 来做分流。

移动设备厂商宣传的 5G 最重要的 3 个特征是高速度、大容量、低时延,其实最新一代的 Wi-Fi 速率比 5G 还要快,最新的 80211ax(Wi-Fi 6)单流峰值速率 12Gbps(5G 网络峰值速率 1Gbps),平均来看,Wi-Fi 每升级一代所用的时间大约只是移动网络的一半左右,所以从最新的Wi-Fi 6 开始,速率会持续领先于移动网络。

办公、物流、商业、智能家居等各行各业都在走向无线化,首先要做的就是把设备、人员、终端等全部联网使用。假设 5G 替代了 Wi-Fi 的存在,那么未来的所有联网终端都需要配备一张类似手机 SIM 卡的东西才可以上网。这一个理由也注定了目前在室内场景 5G 是不可能取代Wi-Fi 的。类似的设备还有 VR、游戏机、电子阅读器、机顶盒等等……

大家都知道手机、pad 等移动终端都是用的电池,大家通常都认为电池的耐用性与安装的业务,和使用频率有关,但人们往往忽略了一点,终端的各种移动信号接入质量好与差也 与电池耗电量有关。当信号变差时,移动终端为了确保给用户提供一个良好的体验,会自动增加发射功率来提升信号质量,这就导致电池耗电量增加。由于 Wi-Fi 的信号源基本是在室内范围,而 5G 信号在室外几十公里外的基站,这样就导致移动终端上传数据时,Wi-Fi 的传送距离远远小于 5G 信号。通常情况下 5G 的通信距离是 Wi-Fi 的几千倍以上,这样就需要手机的信号发射强度大大增加,这就增加了耗电量。曾经有人做过实验,以 4G 为例,使用网络数据半小时,Wi-Fi 会比移动网络节省 5%的电量。另外,最新一代的 Wi-Fi 6 (80211ax)支持 TWT 功能,可以在业务需要时自动唤醒,在业务不适用时自动休眠,进一步节省了电量。

因此,目前所面临的这些问题使得 5G 还无法彻底取代 Wi-Fi,更多的是与 Wi-Fi 进行深度融合,因此使用 Wi-Fi 的企业和用户并不用过于慌张。今天的 Wi-Fi 已不再是一个提供无线网络的设备,更多的应该被视为企业数字化转型的必备设施或中央枢纽。例如目前绝大部分的智慧零售、智慧物流、智慧办公等解决方案的中央枢纽就是 Wi-Fi 网络。

参考:
关于WiFi 6技术,这篇说得最详细
不同的 Wi-Fi 协议和数据速率
HZ (物理单位

物联网体系结构分为感知层、网络层和应用层这三层,物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。

物联网(InternetofThings,缩写:IoT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络。其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景。最初在1999年提出:即通过射频识别(RFID)(RFID+互联网)、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。简而言之,物联网就是“物物相连的互联网”。中国物联网校企联盟将物联网的定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的实时共享以及智能化的收集、传递、处理、执行。广义上说,当下涉及到信息技术的应用,都可以纳入物联网的范畴。

物联网四层体系结构及作用

1、感知层

感知层是物联网发展和应用的基础。感知层相当于物联网的皮肤和五官,完成识别物体、采集信息的任务。感知层包括二维码标签和识读器、RFID标签和读/写器、摄像头、GPS、各种传感器、视频摄像头、终端、传感器网络等数据采集设备。也包括数据接入到网关之前的传感器网络。RFID技术、传感和控制技术、短距离无线通信技术是感知层涉及的主要技术。

2、接入层

接入层由末梢节点和接入网关(Access Gateway)组成,完成应用末梢各节点信息的组网控制和信息汇集,或完成向末梢节点下发信息的转发等功能。这些末梢节点构成了末梢网络或传感网(由大量各类传感器节点组成的自治网络)。

3、网络层

网络层相当于物联网的神经中枢和大脑,实现信息传递和处理。网络层包括通信与互联网的融合网络、网络管理中心、信息中心和智能处理中心等,网络层将感知层和接入层获取的信息进行传递和处理。网络层也包括信息存储查询、网络管理等功能。

4、应用层

应用层相当于物联网的“社会分工”,即与行业需求结合,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,与行业需求结合,实现行业智能化,这类似于人的社会分工,最终构成人类社会。

从物联网的定义及各类技术所起的作用来看,物联网的关键核心技术应该是无线传感器网络(WSN)技术,主要原因是:WSN技术贯穿物联网的全部三个层次,是其它层面技术的整合应用,对物联网的发展有提纲挈领的作用。WSN技术的发展,能为其它层面的技术提供更明确的方向。 以下是实现物联网的五大核心技术:核心技术之感知层:传感器技术、射频识别技术、二维码技术、微机电系统和GPS技术1传感器技术传感技术同计算机技术与通信技术一起被称为信息技术的三大技术。从仿生学观点,如果把计算机看成处理和识别信息的“大脑”,把通信系统看成传递信息的“神经系统”的话,那么传感器就是“感觉器官”。微型无线传感技术以及以此组件的传感网是物联网感知层的重要技术手段。2射频识别(RFID)技术射频识别(Radio Frequency Identification,简称RFID)是通过无线电信号识别特定目标并读写相关数据的无线通讯技术。在国内,RFID已经在身份z、电子收费系统和物流管理等领域有了广泛应用。RFID技术市场应用成熟,标签成本低廉,但RFID一般不具备数据采集功能,多用来进行物品的甄别和属性的存储,且在金属和液体环境下应用受限,RFID技术属于物联网的信息采集层技术。3微机电系统(MEMS)微机电系统是指利用大规模集成电路制造工艺,经过微米级加工,得到的集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。MEMS技术属于物联网的信息采集层技术。4GPS技术GPS技术又称为全球定位系统,是具有海、陆、空全方位实时三维导航与定位能力的新一代卫星导航与定位系统。GPS作为移动感知技术,是物联网延伸到移动物体采集移动物体信息的重要技术,更是物流智能化、智能交通的重要技术。核心技术之信息汇聚层:传感网自组网技术、局域网技术及广域网技术1无线传感器网络(WSN)技术无线传感器网络(Wireless Sensor Network,简称WSN)的基本功能是将一系列空间分散的传感器单元通过自组织的无线网络进行连接,从而将各自采集的数据通过无线网络进行传输汇总,以实现对空间分散范围内的物理或环境状况的协作监控,并根据这些信息进行相应的分析和处理。WSN技术贯穿物联网的三个层面,是结合了计算、通信、传感器三项技术的一门新兴技术,具有较大范围、低成本、高密度、灵活布设、实时采集、全天候工作的优势,且对物联网其他产业具有显著带动作用。2Wi-Fi Wi-Fi(Wireless Fidelity,无线保真技术)是一种基于接入点(Access Point)的无线网络结构,目前已有一定规模的布设,在部分应用中与传感器相结合。Wi-Fi技术属于物联网的信息汇总层技术。3GPRS GPRS(General Packet Radio Service,通用分组无线服务)是一种基于GSM移动通信网络的数据服务技术。GPRS技术可以充分利用现有GSM网络,目前在很多领域有广泛应用,在物联网领域也有部分应用。GPRS技术属于物联网的信息汇总层技术。
核心技术之传输层:通信网、互联网、3G网络、GPRS网络、广电网络、NGB 1通信网通信网是一种使用交换设备、传输设备,将地理上分散用户终端设备互连起来实现通信和信息交换的系统。通信最基本的形式是在点与点之间建立通信系统,但这不能称为通信网,只有将许多的通信系统(传输系统)通过交换系统按一定拓扑结构组合在一起才能称之为通信。也就是说,有了交换系统才能使某一地区内任意两个终端用户相互接续,才能组成通信网。23G网络3G是英文the 3rd Generation的缩写,指第三代移动通信技术。相对第一代模拟制式手机(1G)和第二代GSM、CDMA等数字手机,第三代手机(3G)是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。3GPRS网络这是一种基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接。通俗的讲,GPRS是一项高速数据处理的科技,方法是以“分组”的形式传送资料到用户手上。虽然GPRS是作为现有GSM网络向第三代移动通信演变的过渡技术,但是它在许多方面都具有显著的优势。4广电网络广电网通常是各地有线电视网络公司(台)负责运营的,通过HFC(光纤+同轴电缆混合网)网向用户提供宽带服务及电视服务网络,宽带可通过CableModem连接到计算机,理论到户最高速率38M,实际速度要视网络情况而定。5NGB广域网络中国下一代广播电视网(NGB)是以有线电视数字化和移动多媒体广播(CMMB)的成果为基础,以自主创新的“高性能带宽信息网”核心技术为支撑,构建适合我国国情的、三网融合的、有线无线相结合的、全程全网的下一代广播电视网络。核心技术之运营层:专家系统、云计算、API接口、客户管理、GIS、ERP 1企业资源计划(ERP)ERP是指建立在信息技术基础上,以系统化的管理思想,为企业决策层及员工提供决策运行手段的管理平台。ERP技术属于物联网的信息处理层技术。2专家系统(Exper System)专家系统是一个含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和经验来处理该领域问题的智能计算机程序系统。属于信息处理层技术。3云计算云计算概念间由Google提出的,这是一个美丽的网络应用模式,是指IT基础设施的交付和使用,通过网络以按需、易扩展的方式获得所需的资源。核心技术之应用层:垂直行业应用、系统集成、资源打包应用层主要是根据行业特点,借助互联网技术手段,开发各类的行业应用解决方案,将物联网的优势与行业的生产经营、信息化管理、组织调度结合起来,形成各类的物联网解决方案,构建智能化的行业应用。如交通行业,涉及的就是智能交通技术;电力行业采用的是智能电网技术;物流行业采用的智慧物流技术等。行业的应用还要更多涉及系统集成技术、资源打包技术等。
参考资料>

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13481773.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-15
下一篇 2023-08-15

发表评论

登录后才能评论

评论列表(0条)

保存