使用电化学传感器的单电源、微功耗有毒气体探测器

使用电化学传感器的单电源、微功耗有毒气体探测器,第1张

电路功能与优势

图1所示电路是使用电化学传感器的单电源、低功耗、电池供电、便携式气体探测器。本示例中使用Alphasense CO-AX一氧化碳传感器。

对于检测或测量多种有毒气体浓度的仪器,电化学传感器能够提供多项优势。大多数传感器都是针对特定气体而设计,可用分辨率小于气体浓度的百万分之一(ppm),所需工作电流极小,非常适合便携式电池供电的仪器。

图1所示电路使用双通道微功耗放大器ADA4505-2,该器件在室温下的最大输入偏置电流为2 pA,每个放大器的功耗仅为10 μA。此外,ADR291 精密、低噪声、微功耗基准电压源的功耗仅为12 μA,可建立2.5 V共模伪地基准电压。

使用电化学传感器的单电源、微功耗有毒气体探测器,图1.,第2张

图1. 低功耗气体探测器电路

ADP2503 高效率、降压/升压调节器支持两节AAA电池的单电源供电,在节能模式下的功耗仅为38 μA。

图1所示电路(不包括 AD7798 ADC)的总功耗在正常条件下(未探测到气体)约为110 μA,在最差条件下(探测到2000 ppm CO)约为460 μA。AD7798工作时的功耗约为180 μA(G = 1,缓冲模式),节能模式下仅为1 μA。

由于电路功耗极低,两节AAA电池便可提供合适的电源。当连接到ADC和微控制器或者内置ADC的微控制器时,电池寿命可从6个月以上到一年以上不等。

电路描述

图2显示电化学传感器测量电路的原理示意图。电化学传感器的工作原理是允许气体通过薄膜扩散到传感器内,并与工作电极(WE)相互作用。传感器参考电极(RE)提供反馈,以便通过改变反电极(CE)上的电压保持WE引脚的恒定电位。WE引脚上的电流方向取决于发生的反应是氧化还是还原。在一氧化碳情况下发生的是氧化;因此,电流会流入工作电极,这要求反电极相对于工作电极处于负电压(通常为300 mV至400 mV)。驱动CE引脚的运算放大器相对于 VREF应具有±1 V的输出电压范围,以便为不同类型的传感器(Alphasense应用笔记AAN-105-03,设计恒电位电路,Alphasense公司)提供充足裕量。

使用电化学传感器的单电源、微功耗有毒气体探测器,图 2. ,第3张

图2. 简化电化学传感器电路

流入WE引脚的电流对于每ppm气体浓度低于100 nA;因此将此电流转换为输出电压需要具有极低输入偏置电流的跨阻放大器。ADA4505-2运算放大器在室温下具有最大输入偏置电流为2 pA的CMOS输入,因此很适合这种应用。

2.5 V ADR291为电路建立伪地基准电压,因此支持单电源供电同时消耗极低的静态电流。

放大器U2-A从CE引脚吸取足够的电流,以便在传感器的WE和RE引脚间保持0 V电位。RE引脚连接到U2-A的反相输入;因此其中无电流流动。这意味着电流从WE引脚流出,随气体浓度呈现线性变化。跨阻放大器U2-B将传感器电流转换为与气体浓度成正比的电压。

此电路笔记选择的传感器是Alphasense CO-AX一氧化碳传感器。表1显示与此常见类型的一氧化碳传感器相关的典型规格。

警告:一氧化碳是有毒气体,一旦浓度高于250 ppm便有危险;测试本电路时应格外小心。

使用电化学传感器的单电源、微功耗有毒气体探测器,table,第4张

跨阻放大器的输出电压为:

使用电化学传感器的单电源、微功耗有毒气体探测器,equation,第5张

其中IWE是流入WE引脚的电流, RF 是跨阻反馈电阻(图1中显示为R8)。

CO-AX传感器的最大响应是100 nA/ppm,其最大输入范围为2000 ppm的一氧化碳。因此,最大输出电流为200 μA,最大输出电压由跨阻电阻决定,如公式2所示。

使用电化学传感器的单电源、微功耗有毒气体探测器,equation,第6张

使用5 V电源为电路供电可在跨阻放大器U2-B的输出端产生2.5 V的可用范围。为跨阻反馈电阻选择11.5 kΩ电阻可提供4.8 V的最大输出电压,从而提供大约8%的超量程能力。

传感器使用65 nA/ppm的典型响应时,公式3显示与一氧化碳的ppm有函数关系的电路输出电压。

使用电化学传感器的单电源、微功耗有毒气体探测器,equation,第7张

电阻R4将噪声增益保持在合理水平。选择此电阻的值需权衡两个因素决定:噪声增益的幅度和暴露于高浓度气体时传感器的建立时间误差。对于本例,R4 = 33 Ω,由此可计算噪声增益等于349,如公式4所示。

使用电化学传感器的单电源、微功耗有毒气体探测器,equation,第8张

跨阻放大器的输入噪声在输出端表现为由噪声增益放大。对于本电路,我们仅关注低频噪声,因为传感器工作频率极低。ADA4505-2的0.1 Hz至10 Hz输入电压噪声为2.95 μV p-p;因此,输出端噪声为1.03 mV p-p,如公式5所示。

使用电化学传感器的单电源、微功耗有毒气体探测器,equation,第9张

由于这是极低频1/f噪声,所以很难滤除。然而,传感器响应也极低;因此可以利用这一点,使用截止频率为0.16 Hz的极低频率低通滤波器(R5和C6)。即使是这样的低频滤波器,与30秒的传感器响应时间相比,它对传感器响应时间的影响也可忽略。

电化学传感器的一个重要特性是极长的时间常数。首次上电时,输出建立最终值可能需要几分钟。当暴露于目标气体浓度的中量程阶跃时,传感器输出达到最终值的90%所需的时间可在25秒至40秒之间。如果RE与WE引脚间的电压产生剧烈幅度变化,传感器输出电流建立最终值可能需要几分钟。这也同样适用于传感器周期供电的情况。为避免启动时间过长,当电源电压降至JFET的栅极-源极阈值电压(约2.5 V)以下时,P沟道JFET Q1将RE引脚与WE引脚短接。

两节AAA电池或2.3 V至5.5 V电源为此电路供电。Q2提供反向电压保护,ADP2503将输入电源调节至传感器供电所需的5 V电压。

常见变化

如果使用可编程变阻器(如AD5271),而不是固定跨阻电阻(R8),本电路就可以用于不同的气体传感器,而无需改变材料清单。AD5271提供20 kΩ、50 kΩ或100 kΩ的标称电阻值。由于有256个跳变位置,因此100 kΩ选项的阶跃为390.6 Ω。AD5271的电阻温度系数为5 ppm/°C,优于大多数分立电阻;其电源电流为1 μA,对系统功耗的影响极小。

虽然两节AAA电池就能为图1所示电路供电数月之久,一些应用可能需要使用外部电源运行。实施双电源配置的最有效方式是使用内置开关且具有机械断开特性的电源插座,在将外部电源插头插入插座时可自动移除电池电源。

本文所述电路具有极低的功耗。使用两个 ADA4528-1 运算放大器代替ADA4505-2可大幅降低噪声,提高精度,但功耗也会增加。ADA4528-1具有实际为零的失调漂移和业界领先的低输入电压噪声。

同样,ADR3425 可取代ADR291,从而获得极低温漂;但代价是功耗增加。

最后,图1所示电路适用于与12位ADC接口,例如大多数混合信号微控制器中的内置转换器。

对于必须测量气体浓度ppm比例的应用,使用ADA4528-1和ADR3425使得电路性能适合与16位ADC接口,例如AD7798或AD7171。

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2438092.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-03
下一篇 2022-08-03

发表评论

登录后才能评论

评论列表(0条)

保存