数字信号在不同时钟域间同步电路的设计

数字信号在不同时钟域间同步电路的设计,第1张

 

  随着系统应用需求的不断增多和集成电路技术的快速发展,大规模数字电路中常包含多个时钟域,设计中不可避免地要完成数字信号在不同时钟域间的传递,这时,如何保持系统的稳定,顺利完成控制信号和数据通路的传输就变得至关重要,这也是电路设计中最为棘手的问题之一。如果不采取一定的措施,控制信号和数据通路的接收方极易产生亚稳态信号,从而造成电路的同步出错。本文讨论了控制信号和数据通路的同步,提出了解决方案。

  1 控制信号的同步技术

  控制信号的同步分从快时钟域到慢时钟域、从慢时钟域到快时钟域的转换和异步输入控制信号的同步三种情况。分别采用直接锁存法和锁存反馈法来实现。

  1.1 直接锁存法

  控制信号从慢时钟域到快时钟域转换时,由于控制信号的有效宽度为慢时钟域周期,需要做特殊处理,保证跨时钟域后有效宽度为一个快时钟周期,否则信号转换到快时钟域后可能被误解释为连续的多个控制信号。同步电路如图1所示,在快时钟域对控制信号进行两级锁存,由于第二和第三个触发器的输出延迟一个快时钟周期,将它们做一个逻辑运算,就可以得到有效一个快时钟周期的控制信号。

  

数字信号在不同时钟域间同步电路的设计,第2张

 

  1.2 锁存反馈法

  锁定反馈法主要解决信号从快时钟域向慢时钟域过渡时,如果信号宽度不满一个慢时钟周期,慢时钟可无法对信号进行正确采样的问题,也可用于处理异步输入信号的同步。如图2所示,同步装置由三级触发器组成,第一级触发器,数据输入端为电源,时钟输入端为控制信号,随后两级触发器由接收方时钟触发。发送方时钟域的控制信号到达后,第一级触发器的输出为高电平,在接收方时钟域对信号进行两级锁存后,若第三级触发器输出为高电平,就将第一级触发器清零。由于二三级触发器的输出延迟一个慢时钟周期,将它们做一个逻辑运算,就可以得到有效一个接收方时钟周期的控制信号。

  

数字信号在不同时钟域间同步电路的设计,第3张

 

  图1、图2所示的电路,在接收方的时钟域采用两级触发器,大大增加了同步器的平均失效时间MTF(mean TIme to failure),MTF的有关计算公式在文献中给出。计算表明,对于大多数的应用,两级锁存器同步失效的概率很小,足以消除可能出现的亚稳态情况。

  2 数据通路的同步

  数据在不同时钟域之间的传递,一般不采用上述的同步器,因为多位数据的同时变化会使同步器的采样错误率大大增加。本文采用异步FIFO实现数据通路的同步。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2448187.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-03
下一篇 2022-08-03

发表评论

登录后才能评论

评论列表(0条)

保存