量身订制的DSP元件设计策略

量身订制的DSP元件设计策略,第1张

 

  许多嵌入式处理器都宣称它们的功耗最低。但是事实上没有一颗元件能在所有的应用中保持最低功耗,因为低功耗的定义与应用环境习习相关,适合某种应用的晶片设计很可能会给另一种应用带来难题。可携式应用多半是根据电池寿命来定义低功耗,这类应用的功能相当广泛, *** 作模式也千变万化。电信系统元件若要满足应用电源需求,就必须在功率预算范围内处理所要求的通道数目,同时透过封装和电路板将功耗散逸,以确保元件保持在额定温度范围内;另外,这些基础设施应用也很重视最大负载条件下的功耗。因此,为了达到功耗要求,DSP供应商会针对目标应用选择最合适的元件制程、电路设计、电压和频率 *** 作点以及整体架构。

  省电技术

  DSP供应商有许多技术可以用来降低功耗,并且达成效能目标,包括:

  ●选择适当制程;

  ●电晶体设计技术;

  ●选择正确的 *** 作频率和电压;

  ●选择正确的架构,包括整合度、记忆体架构和运算处理单元;

  ●採用散热效率很高的封装,确保元件保持在特定 *** 作温度范围内。

  功耗来源

  无论应用为何,元件功耗都包含下面几种来源:

  漏电功耗(leakage power)

  元件的漏电功耗为固定值,不受处理器动作或 *** 作频率影响,但会随着制程、 *** 作电压和温度而改变。低精密度(low geometry)制程的漏电功耗多半会跟着电压和温度而呈指数增加。

  时脉功耗(clocking power)

  元件的时脉功耗与时脉频率成正比。高整合度元件的晶片面积多半用于记忆体或暂存器等同步组件,如果时脉架构设计不良,那么无论元件实际工作量多寡,其功耗都会保持不变。

   *** 作功耗(acTIve power)

  与元件当时所执行的实际系统功能有关。

  除了上述来源之外,元件功耗还会受到两大因素影响:

  元件电流

  元件电流越高,电池电力的消耗速度就越快,有时还会超出功率预算范围而导致供应电压下降,使元件脱离正常 *** 作区而造成错误。

  元件/系统温度升高

  元件若无法有效散热,其温度就可能超出额定范围而造成 *** 作错误。

  下列最佳化技术会以不同方式解决前述各种功耗问题。

  选择适当制程

  为了使不同应用的效能和功耗达到最佳化,德州仪器(TI)能提供各种制程类型,例如TI的130奈米低漏电制程在1.5V *** 作时几乎没有漏电流,对于DSP多半处于闲置状态的可携式应用而言,这种低漏电制程就能帮助它们节省功耗。另一种高效能制程的漏电流较大,却能在1.2V下 *** 作,採用该制程的元件可以达到低漏电制程的两倍MHz效能。在较重视最大 *** 作功耗(fully-acTIve power)的基础设施应用里,这种高效能制程的竞争力还胜过低漏电制程,原因有两点:首先,低漏电运算处理单元的 *** 作频率只有高效能制程的一半,这表示其数量必须加倍才能提供同样效能,但这会导致元件成本提高。其次,由于功耗与电压平方成正比,故在其他条件相同的情形下,高效能制程的 *** 作功耗只有低漏电制程的(1.2V/1.5V)2或是64%。由于低 *** 作功耗对于基础设施应用的重要性通常会超过低漏电功耗,因此高效能制程就成为这类应用的最佳选择。

  电晶体设计

  同样制程的电晶体也可以有不同的开关临界电压(VT),例如低VT电晶体的切换速度较快,高VT电晶体的漏电流则较小,晶片只需在会影响速度的部份使用低VT电晶体,其它电路则採用高VT电晶体以节省电力。设计人员的元件资料库应包含高VT和低VT电晶体所构成的基本逻辑闸(NAND、NOR和INVERT等),他们有时还会使用中间临界电压(middle-VT)的电晶体。一般说来,除非为了满足重要的效能要求,否则应尽量使用高VT电晶体组成的逻辑闸。

  元件 *** 作点:电压和频率

  数种元件时脉供应方式可以节省功耗:

  ●多时脉域(multiple clock domain);

  ●动态频率调整(dynamic frequency scaling);

  ●时脉闸控(clock gating)。

  除了时脉,调整电压也能降低功耗:

  ●静态电压调整;

  ●动态电压/频率调整;

  ●多电压域(multiple voltage domain)。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2457620.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存