基于FPGA的高精度数字电源设计

基于FPGA的高精度数字电源设计,第1张

1 引言

  在信息技术高速发展的今天,电子系统数字化已经成为有目共睹的趋势,从传统应用中小规模芯片构造电路系统到广泛地应用单片机,到今天DSPFPGA在系统设计中的应用,电子设计技术已迈入了一个全新阶段。FPGA不仅具有容量大,逻辑功能强的特点,而且兼有高速、高可靠性。随着EDA技术的发展和VLSI工艺技术的进步,特别是软/硬件IP芯核产业的迅猛发展,可编程片上系统(SOPC)己经大量使用。本文通过对高精度数字电源系统的研发,提出了FPGA数字电源控制器的应用思路。

 基于FPGA的高精度数字电源设计,第2张

2 系统组成

  本系统是以单片现场可编程门阵列(FPGA)为基础的全数字控制的高精度开关电源。数字控制的H桥脉宽调制的DC-DC变换器电源系统如图1所示。

  图中,功率主电路由三相整流器、低频LC滤波电路、DC-DC功率变换器、输出高频滤波电路等几部分构成;控制及调节功能主要由基于FPGA的数字电源控制器完成,可以按设计要求来调节电源输出电压、电流

  FPGA中主要分两大模块,第一个模块是由软核CPU组成的通讯管理模块;第二个模块由几个DSP块组成,主要完成调节器的PI或PID运算、高分辨率PWM信号的产生以及数字滤波等。

  在PWM开关电源中,PWM波形的产生及其准确调制至关重要。当使用FPGA数字控制器时,电流环及电压环的调节方式为数字化的PI(比例积分)或PID(比例积分微分)调节,反馈电流或电压信号经过A/D(模拟/数字)转换后输入到控制器,由控制器调节脉冲的宽度。

  采用上述方案的数字化电源相对于传统的模拟控制方式,具有显而易见的优势。对于不同的负载对象,可以通过在软件中修改调节器参数来满足指标要求,并且可以按照实际需要自由配置成为单环或双环控制系统。这些都是在软件中完成的,系统控制调节单元的硬件无需重复配置。

3 软核Nios CPU

4 调节器算法(PI或PID)

 基于FPGA的高精度数字电源设计,第3张

调节器的算法在数字电源是一个至关重要的环节,它的好坏直接影响到电源系统的各项性能指标。

  以某加速六极磁铁所需电源为对象,主要参数如下:

磁铁:Rm=0.14H,Lm=0.266mΩ

电源:Un=70V,电压纹波小于1×10-3(1kHz以下);

In=200A,电流纹波小于5×10-5,跟踪误差小于1×10-4。

  若采用电流单闭环控制,并采用PI调节器,仿真的系统模型如图3所示。

 基于FPGA的高精度数字电源设计,第4张

  图3中,上位电流给定信号通过16位DAC转换后,与DCCT输出的电流反馈信号进行比较,得到误差信号,此误差经过误差放大器放大后送入PI调节器,由调节器的输出来控制PWM并驱动功率器件,从而实现负载对象所要求的高精度输出电流。

  在Matlab/Simulink中对图3所示系统加以斜坡给定,可仿真得到系统响应如图4所示。可以看出系统无超调,跟踪误差小于0.02A(0.02/200=1×10-4),满足系统要求的指标。

 基于FPGA的高精度数字电源设计,第5张

  仿真完成后可以通过DSPBuilder系统设计工具构造一个含有HDL语言的PID功能的DSP块。这个DSP块可以作为一个IP核供FPGA直接调用。其输出用于PWM调制。

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2474386.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存