有机EL,柔性显示器中的主流技术

有机EL,柔性显示器中的主流技术,第1张

  1.前言

  本文将以“有机EL,柔性显示器的中流砥柱”为题,介绍柔性显示器的开发、实用化现状与展望。有机EL也叫 OLED(Organic Light EmitTIng Diode),尤其是驱动元件采用TFT的有源矩阵驱动式有机EL(AMOLED:AcTIve Matrix Organic Light EmitTIng Diode),能够实现高清晰度的全彩显示。

  在进入正题之前,笔者将首先比较液晶与有机EL两种显示器的器件构造。然后明确大型有机EL电视的量产课题;接着介绍2015年11月初发表的单层构造的有机EL;最后讲解正题“柔性有机EL的现状”,希望通过笔者的讲解,让大家认识到现状与最终目标存在的差距。

  2. 液晶 vs. 有机EL

  2.1 显示器的器件构造与直接材料成本比率

  笔者目睹了显示器市场从长期占据主流的显像管(CRT)到液晶的变迁。不只是CRT和液晶,在形形色色的显示中,部件和材料的作用乍看普通,其实都非常重要,是在显示技术发展中决定产品优劣的最大要素之一。

  CRT 与液晶的共同点是部件数量多、通用性高。CRT厂商和液晶面板厂商很容易就能更换部件供货厂商,在市场成熟之后,依然有新企业不断涌入。部件厂商之间,改 善性能、降低成本的竞争增加。通过竞争,改善性能、降低成本两个原本相悖的趋势实现了齐头并进。在激烈竞争的洗礼下,技术的进步令人叹为观止。笔者认为, 部件通用性高、涉足门槛低的技术,是成为显示器主力军的必备条件。

  现在,以有机EL为中心,新一代显示器的开发和实用化进行得如火如荼。新一代显示器一般倾向于把部件数量少、构造简单作为理想状态。构造简单当然最好不过,但不可否认的是,部件数量少可能会导致参与开发的企业少,竞争有限。

  液晶的一大优势,在于部件厂商的技术提案非常多。显示性能好的显示器,并不一定就能成为主流。还必须看起能够占领市场的投资和部件产业的发展。现在已经建立起稳固地位的液晶,还有激光源、量子点等部件新选择,所以今后,其地位估计今后也不会动摇。

  图 1是液晶和有机EL(这里分别为TFT-LCD和AMOLED)的器件构造。图中()内的数字代表成本比率。AMOLED是自发光器件,无需背光单元 (BLU)。而TFT-LCD(一般使用的透射型),背光单元是必需品,占总成本的比率高达50%。从削减成本的角度出发,背光单元等部件也是重要项目。 因为在TFT-LCD的成本构成中,直接材料成本(部件成本)占到了60~70%,如果不从这里着手改良,根本不可能削减成本。通过TFT-LCD基板的 大型化削减成本的方式已经达到了极限。

  

  (b)AMOLED的器件构造

  图1:TFT-LCD与AMOLED的器件构造与成本构成

  TFT- LCD如图1所示,包括作为透射型显示器光源的BLU、随着加载电场开关灯光的液晶和偏光板,以及实现彩色化的彩色滤光片(CF),部件的功能各自独立。 而且,TFT基板与CF基板基本上是通过不同的工序制作。因此可以逐道工序进行检查及修复。这特别有助于提高使用大型基板的大屏幕TFT-LCD(1枚基 板可以制作的数量少)的成品率。

  而AMOLED则是通过在TFT阵列的基板上叠加纳米级有机膜的方式制作。因此,从器件构造来说,虽然每层有机膜的功能各自独立,但无法在加工过程中进行检查和修复。可以称之为“功能集成器件”。

  2.2 量产有机EL电视面临的课题

  2013 年的“SID”举办的“LCD or OLED?”讲座(Session 3)上,笔者以“TFT-LCD as leading role in FPD”为题发表了特邀演讲。在演讲中,列举了有机EL电视存在的5个量产课题,指出“重要的是解决这些课题,向消费者展示与液晶电视的差别,并且具有价 格竞争力”。

  (a)发光材料:低分子(真空蒸镀)或高分子(印刷)、荧光或磷光

  (b)需要解决耗电量、寿命、残影等问题

  (c)支持第10代面板的TFT阵列制造装置

  (d)替代掩模蒸镀的分涂技术和装置

  (e)支持大型面板的封装技术和装置

  那 场演讲已经过去了2年多,现在量产大屏幕电视用有机EL面板的企业,只有韩国LG显示器一家。听说该公司虽然没有取得明显的技术突破,但通过改变器件构 造,提高了成品率。不过,产量等于[(成品率×开工率)/工期时间],由此推测,IGZO的成膜和发光层蒸镀工序的开工率绝对不高。

  3. 有机EL的器件构造与制造工艺

  

  (a)有机EL(OLED)

  

  (b)有机EL(OLED)

  图2:过去的多层构造与新开发的单层构造的有机EL(OLED)

  现在的有机EL通过使用磷光发光材料,量子效率达到了100%的理论极值。器件构造如图2(a)所示,采用多层构造。各层使用真空蒸镀法,层叠纳米级有机材料。构成了多层分担有机EL的各项功能的构造。

  

  图3:利用单层构造有机EL(OLED)实现的白色显示

  东 北大学教授矶部宽之等人得到了一个颠覆常识的发现:“通过设计1种基础材料,可以制作出单层、发光效率接近理论极值的有机EL”(图2(b))。使用的有 机材料,是仅由碳和氢两种元素组成的有机物(碳氢化合物)。从分子设计的本质出发,成功简化了有机EL的设计方针。从“最大限度激发元素性能”的元素战略 的角度来看,也是一项重要的发现。该研究组已经证实,这种新型的碳氢化合物,能够利用磷光发光材料,实现红、绿、蓝三原色。如图3所示,成功制作出了白色 发光器件。

  这一发现的重点,是使用苯周围有甲基(CH3)的甲苯,可以制作出功能更强,单层且具有高发光效率的有机EL基础材料。通过对 树木中分离出的天然物(甲苯)进行分子设计、化学转化,形成5个相连的分子(5Me-[5]CMP),即可制作出高功能电子材料。这种电子材料只使用碳和 氢元素。在不久的未来,有望实现“轻轻一喷就能制造”。

  4. 柔性有机EL的现状与展望

  图4是已经投入量产或正在开发的 有机EL显示器。现在的大屏幕有机EL电视使用的显示器,是截面固定的曲线(Fixed Curve)形状,曲线的半径R为4500mm。还算不上是柔性显示器。已经投产的智能手机用“柔性有机EL”,其实是固定曲线或是固定边缘曲线 (Fixed Edge Curve),也谈不上柔性(半径R方面,固定曲线为700mm,固定边缘曲线为10mm)。可穿戴用显示屏也是固定曲线(R=5~10mm),同样不是 柔性。现在正在开发的折叠(Large Fold)和多层折叠(Acute Foldable)应该可以称为柔性显示器。半径R方面,折叠为3mm,多层折叠为1mm以下。

  

  图4:已经投入实用和正在开发的柔性有机EL(OLED)

  现 在,大屏幕电视用有机EL面板,只有LG显示器投入了量产。其配备的TFT使用IGZO,是在玻璃基板上制作。而移动产品使用的面板,则有韩国三星显示器 和LG显示器两家进行量产。其中也有使用树脂基板的类型。这些面板都是在玻璃基板上涂布聚酰亚胺膜,在上面制作低温多晶硅(LTPS)TFT,然后层叠有 机EL,从玻璃基板上剥离聚酰亚胺膜。移动产品用与电视用不同,功耗必须要低,因此只能使用可以形成COMS电路的LTPS TFT。这些都是基于无机半导体的TFT,可以弯曲的半径存在限制。

  5. JOLED的战略

  下面来介绍汇集日本的最尖端有机EL技术(索尼和松下),于2015年1月5日诞生的“JOLED”公司的技术。JOLED将利用下面的技术,确立OLED的优势地位。

  5.1 有机EL印刷技术(Printed OLED)

  这项技术采用无需RGB真空镀膜的印刷方式。这种方式是通过在空气中印刷材料形成发光层(EL层),“无需真空环境”、“无需掩模”,制造工艺需要的投资少,维护简单。而且容易支持面板的大型化。因为只需要在需要的位置涂布需要的分量,所以材料的损耗少。

  但是,这样制作出来的有机EL,是否具有与蒸镀法相同的特性和寿命?印刷方式能够实现多高的清晰度?在思考有机EL的应用时,这些是非常重要的课题。通过在中型TFT液晶中应用,4K、8K的高清晰度面板正在开发或已经投入了实用。

  5.2 氧化物半导体技术

  这项技术采用索尼开发的自对准型顶栅构造,使用5枚掩模制作TFT。利用自主开发的金属反应,降低了TFT电极部分的电阻。这项技术确保了TFT的高稳定性。还将通过组合自主开发的补偿电路技术,在中型以上尺寸充分发挥有机EL的性能,争取实现高清晰度、低成本的显示器。

  不 过,氧化物半导体的真空镀膜(溅射)与非晶Si(a-Si)镀膜使用的等离子CVD相比,装置的开工率和成品率存在课题。而且,以IGZO为代表的氧化物 半导体为多元材料(例如四元),不容易以均匀的成分和厚度,在大面积基板上制作。从绿色工艺的观点出发,笔者衷心希望开发出涂布型的氧化物半导体TFT技 术,并将其投入实用。

  5.3 柔性面板

  JOLED正在利用在玻璃基板上成膜并转印至薄膜的技术,开发柔性面板。但是,柔性显示器的实现,关键在于利用卷对卷(R2R)方式进行生产,而非单张方式。重要的是以有别于现有厂商的技术,提供用户需要的柔性显示器。

  6. 结语

  有 机EL具有液晶难以实现的显示特性,所以它一直被看作是柔性显示器的主流。本栏目比较了二者的器件构造及成本构成。在明确大型有机EL电视存在的量产课题 的同时,介绍了当前的柔性有机EL。这些有机EL现在采用的生产方式,与绿色工艺还相去甚远,换言之,日本厂商还有机会扳回劣势。笔者这次介绍的都是“日 本发明”的技术,希望这些新技术能够引领世界的显示器产业和学会不断向前发展。(特约撰稿人:鹈饲育弘,Ukai Display Device InsTItute代表)技术在线

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2492470.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存