模拟与数字布局

模拟与数字布局,第1张

  模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,若采用的布线策略不同,即仍旧是用简单电路布线设计,则不再是最优或最佳方案了。为此,本文就旁路电容电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMl)等几个方面,就模拟和数宇布线的基本相似之处与差别及以12位传感系统为例说明的布局窍门进行讨论与分析。为此,先述模拟和数字布线要领的相似之处。

  一、模拟和数字布线要领的相似

  1、旁路或去耦电容

  在布线时,模拟器件和数字器件都需要这些类型的电容,都需要靠近其电源引脚连接一个旁路电容,此电容值通常为0.1μF。系统供电电源则需要另一类去耦电容,通常此电容值大约为10μF。

  这些电容的位置如图1所示。电容取值范围为推荐值的1/10至10倍之间。但引脚须较短,且要尽量靠近器件(为0.1μF 电容)或供电电源(为10μF电容)。

  

模拟与数字布局,第2张

 

  在电路板上加旁路或去耦电容,以及这些电容在板上的布置,对于数字和模拟设计来说都属于基本常识,但其功能却是有区别的。

  在模拟布线设计中旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动

  而对于控制器和处理器这样的数字器件来说,同样需要去耦电容,但原因不同。这些电容的一个功能是用作“微型”电荷库,这是因为在数字电路中,执行门状态的切换(即开关切换)通常需要很大的电流,当开关时芯片上产生开关瞬态电流并流经电路板,有这额外的“备用”电荷是有利的。如果执行开关动作时没有足够的电荷,会造成电源电压发生很大变化。电压变化太大,会导致数字信号电平进入不确定状态,并很可能引起数字器件中的状态机错误运行。流经电路板走线的开关电流将引起电压发生变化,由于电路板走线存在寄生电感,则可采用如下公式计算电压的变化:

  V=Ldl/dt

  其中V=电压的变化

  L=电路板走线感抗

  dI=流经走线的电流变化

  dt=电流变化的时间

  因此,基于多种原因,在供电电源处或有源器件的电源引脚处施加旁路(或去耦)电容是非常好的做法。

  2、电源线和地线要布在一起

  电源线和地线的位置良好配合,可以降低电磁干扰(EMl)的可能性。如果电源线和地线配合不当,会设计出系统环路,并很可能会产生噪声。电源线和地线配合不当的PCB设计示例如图2所示。在此电路板上,使用不同的路线来布电源线和地线,由于这种不恰当的配合,电路板的电子元器件和线路受电磁干扰(EMI)的可能性比较大。

  

模拟与数字布局,第3张

 

  

模拟与数字布局,第4张

 

  此电路板上,设计出的环路面积为697平方米。而采用图3所示的方法,电路板上或电路板外的辐射噪声在环路中感应电压的可能性会大大降低。在此单面板中,到电路板上器件的电源线和地线彼此靠近。此电路板中电源线和地线的配合比图2中恰当,其设计出的环路面积为12.8平方米。电路板中电子元器件和线路受电磁干扰(EMI)的可能性降低了679/12.8倍或约54倍。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2511288.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存