图灵机有什么意义_学习图灵机模型中遇到的问题

图灵机有什么意义_学习图灵机模型中遇到的问题,第1张

 图灵机意义

图灵提出图灵机的模型并不是为了同时给出计算机的设计,它的意义我认为有如下几点:

1、它证明了通用计算理论,肯定了计算机实现的可能性,同时它给出了计算机应有的主要架构;

2、图灵机模型引入了读写与算法与程序语言的概念,极大的突破了过去的计算机器的设计理念;

3、图灵机模型理论是计算学科最核心的理论,因为计算机的极限计算能力就是通用图灵机的计算能力,很多问题可以转化到图灵机这个简单的模型来考虑。

对图灵机给出如此高的评价并不是高估,因为从它的设计与运行中,我们可以看到其中蕴涵的很深邃的思想。通用图灵机等于向我们展示这样一个过程:程序和其输入可以先保存到存储带上,图灵机就按程序一步一步运行直到给出结果,结果也保存在存储带上。另外,我们可以隐约看到现代计算机主要构成(其实就是冯诺依曼理论的主要构成),存储器(相当于存储带),中央处理器(控制器及其状态,并且其字母表可以仅有0和1两个符号),IO系统(相当于存储带的预先输入);

4、“图灵机”只是假象的“计算机”,完全没有考虑硬件状态,考虑的焦点是逻辑结构。图灵在他著作里,进一步设计出被人们称为“通用图灵机”的模型,图灵机可以模拟其他任何一台解决某个特定数学问题的“图灵机”的工作状态。图灵甚至还想象在带子上存储数据和程序。“通用图灵机”实际上就是现代通用计算机的最原始的模型。

学习图灵机模型中遇到的三个问题

1) 为什么图灵机有不可判的问题?

2) 为什么强大的图灵机会不停机?

3) 为什么图灵当初要设计图灵机?

图灵机虽然构造简单,但却及其强大,它能模拟现代计算机的所有计算行为,堪称计算的终极机器。然而即便是这个终极机器,也有令它无能为力的问题,这便是第一个要回答的问题:为什么图灵机有不可判的问题?

首先明确什么是图灵可识别(Turing recognizable)和图灵可判定(Turing decidable)。图灵机的识别对象是语言,图灵可识别当然不是说图灵本人能识别的语言(照这样说汉语可能是图灵不可识别的~),事实上这只是简称,全称应该是图灵机可识别语言(Turing machine recognizable language)和图灵机可判定语言(Turing machine decidable language)。 一台图灵机在读取一个串后可能进入三种状态:接受、拒绝、循环,如果图灵机进入循环状态,那它将永不停机。现在假设有语言A,如果能设计出一台图灵机M,对于任意字符串ω,如果ω∈A,那么M读取ω后会进入接受状态,那么A是一个图灵可识别语言。注意这个定义对于ω不属于A的情况没有做出限制,所以M读取到不属于A的ω,那么它有可能拒绝,也有可能循环。 图灵可判定语言的要求更严格,它要求对于语言A能设计出一台图灵机M:如果ω∈A,M进入接受状态;否则进入拒绝状态。如果一个语言是图灵可判定的,总能设计出一台图灵机,能在有限步数内判定一个字符串是不是属于这个语言。如果一台图灵机对所有输入总是停机,那么称它为判定器(decider)。然而第一个问题指明一定有所有判定器都不能判定的问题,要证明这一点,得从康托(Georg Cantor)说起。

康托最大的贡献可能是创建了现代集合论,他认为某些不同的无穷集合有不同的大小。1891年,康托发表了一篇只有5页的论文,证明实数集的基数大于自然数集,并在这篇论文中提出了传说中的对角线方法(方法虽然巧妙但很简单,wiki上有我就不赘述)。图灵机的不可判定问题便需要借助对角线方法。而实数集“大于”自然数集这个事实,可以这么想:“无限×无限”比“无限×有限”大。每个自然数是有限的,集合是一阶无限,自然数集就是一阶无限;相较之下,一个实数是一阶无限,集合又是一阶无限,那么实数的集合就是二阶无限。这个一阶二阶只是我个人的说法,关于不同集合之间的大小关系,康托提出连续统假设,即希尔伯特第一问题,认为不存在一个基数绝对大于可数集而绝对小于实数集的集合,不过这跟今天的话题没有关系,不再展开。

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2552509.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-06
下一篇 2022-08-06

发表评论

登录后才能评论

评论列表(0条)

保存