Clock Skew , Clock uncertainly 和 Period

Clock Skew , Clock uncertainly 和 Period,第1张

Intel 4790K的主频是4.0GHz,高通801的单核频率可达2.5GHz,A8处理器在1.2GHz,MSP430可以工作在几十MHz……这里的频率的意思都是类似的,这些处理器的频率都是厂商给定的。但是对于FPGA的工作频率而言却往往需要我们自己决定,在产品的设计初始就需要考虑FPGA工作在哪个频率,譬如250MHz。这个取值并不是瞎确定的,譬如如果定在1GHz,那显然是不可能的,有一本叫《XXXXX FPGA Data Sheet DC and Switch CharacterisTIcs》的手册给出了FPGA各个模块的直流供电特性和最高工作频率。这里给出的是理论工作上限制,Virtex-5各个模块工作频率最高大概在400-500MHz之间。当然还要考虑FPGA的输入clk了,即使有DCM等模块分频倍频,一般也不会选择一个很奇怪的分频比。

一旦工作频率确定下来之后,问题就来了。你所建立的工程是否能在这一要求的工作频率下正常工作?只需要在UCF文件内添加时钟的周期约束,Place & Route之后就可以得到结果了。约束满足了,很好;没有满足,可以改,如何修改将在Achieving TIming Closure中介绍。

谈到这里,有一个问题呼之欲出:除了器件本身的限制,还有什么会影响工作频率?下文将介绍相关概念。

1. Clock Skew

考虑同步时序电路中的触发器,在时钟沿到达的时候,数据必须是稳定(非亚稳态)且有效的(符合设计需求)。同步时序电路中,对于两个相连的触发器(譬如下图,Figure6-26),我们自然希望这两个触发器的时钟相位完全一致,但这往往是不现实的。不同的延时将破坏这一关系,延时差称为Clock Skew,即时钟歪斜。

Clock Skew = clock path delay to the desTInaTIon synchronous element - clock path delay to te source synchronous element.

时钟的不同路径延时将破坏其原本完美的相位关系。但并不是说Clock Skew的取值为0是最好的 。Clock Skew是如何影响时钟周期(频率)将在第三节介绍。

注意,clock skew中只提到了path delay,但是实际上对于destination synchronous element 和source synchronous element而言,时钟的相位可能是不一样的。这一点表现出了时钟的相位和clock skew是独立的两个概念。在前文的OFFSET中,相位的表现为clock arrival time。

Clock Skew , Clock uncertainly 和 Period,Clock Skew , Clock uncertainly 和 Period,第2张

上图是一个clock skew的例子,可以看到两个触发器的时钟不是同相的,但是计算clock skew的时候没有必要考虑。以DCM的输出作为参考,源同步元素的路径延时为0.852+0.860+0.639 = 2.351,目的同步元素的路径时延为0.860 + 0.860 + 0.639 = 2.359。故clock skew = 0.008 。

2. Clock Uncertainty
Clock Uncertainty 的概念比较好理解,就是时钟的不确定性。时钟不确定性是时钟本身的不完美导致的。譬如对于100MHz时钟,上升沿本应该在0ns,10ns,20ns;实际上却在0ns,10.01ns,19.99ns,这个差距就是时钟的不确定性。时钟不确定性受到了多个因素的影响,其中一个因素是clock jitter,关于clock jitter,PERIOD约束中有一个INPUT JITTER的关键字告诉综合工具输入时钟的jitter。譬如

Clock Skew , Clock uncertainly 和 Period,Clock Skew , Clock uncertainly 和 Period,第3张

不同情况下,Clock Uncertainty 的计算方式是不一样的,譬如DCM时钟下

Clock Uncertainty = [√(INPUT_JITTER? + SYSTEM_JITTER?) + DCM_Discrete_Jitter]/2 + DCM_Phase_Error

SYSTEM JITTER定义了整个系统的jitter,受到了电源噪声、板级噪声和系统任何外部jitter的影响。对于clock uncertainty和clock jitter来说,好像并没有什么太值得注意的地方。

3. Period 分析

Clock Domains

对于同步时序电路来说,不可避免的有时钟的存在,比较简单的就是所有的触发器都采用了一个时钟。那么可以认为整个设计中的路径都处于这个时钟的覆盖下,如下图,这两个触发器之间的路径是受到这一个时钟的时钟周期约束的。这种情况称为single clock domain。

Clock Skew , Clock uncertainly 和 Period,Clock Skew , Clock uncertainly 和 Period,第4张

但是对于大多数设计来说,情况并不是这样的,譬如DCM可以分出不同相位的时钟。如下图,此时两个触发器的时钟不是一样的,而这两个触发器之间的数据路径连接了这两个时钟。什么是时钟域?域即是区域,时钟的区域,在我看来就是时钟覆盖的范围。下图中触发器之间的路径,一端属于clk20,一端属于clk20_90g,横跨了两个时钟域。注意这两个时钟是一个DCM产生的,时钟相关,因此XST能够对其进行分析。本节内容不谈跨时钟域的问题。

Clock Skew , Clock uncertainly 和 Period,Clock Skew , Clock uncertainly 和 Period,第5张

举例

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2556899.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-06
下一篇 2022-08-06

发表评论

登录后才能评论

评论列表(0条)

保存