借用整合式CFE防护提高充电系统层级安全性

借用整合式CFE防护提高充电系统层级安全性,第1张

  由于锂电池同时具有重量和体积的高能量密度特性,锂电池已广泛用于可携式装置,但是锂电池对于过度充电及过热极为敏感,两种情形皆可能导致热失控及电池爆裂。如何设计安全的电池充电系统,已成为充电电池供电的装置重大考量因素之一,本文将探讨锂电池安全性、充电电池设计、安全监控,以及充电系统安全性等主要系统设计考量。

  电池充电器IC角色关键

  图1显示一般的电池充电系统,该系统输入可以是交流电(AC)墙式转接器供应的直流电(DC)电源,或通用序列汇流排(USB)介面供应的DC电源。一般的电池充电系统包括充电前端(CFE)、电池充电器及电池组。CFE防护积体电路(IC)整合输入过压、过流及电池过压等防护机制,能够提高电池供电系统的安全性。电池充电器IC可调节电池充电电压及电流,并监控电池温度,以延长电池使用寿命,并提高安全性。了解锂电池特性,对于设计更安全的充电系统而言相当重要。

  借用整合式CFE防护提高充电系统层级安全性,第2张

  图1 一般的电池充电系统

  锂电池安全性不可忽视

  由于锂电池採用活性极高的材料,因此必须注意运作温度过高会加速电池衰减,导致热失控,甚至使锂电池爆裂的问题。如果电池在高电流下过度充电或发生短路,就会出现快速升温的现象。

  锂电池过度充电时,活性金属锂就会沉积在正极上,这种材料会大幅提高火灾发生机率,因为只要接触电解液和负极材料就会爆裂。例如,锂/碳嵌入化合物遇水会发生化学反应,而反应产生的高温可点燃释放的氢气。

  对于4.3伏特(V)电池电压而言,氧化锂钴(LiCoO2)等负极材料在温度超过热失控临界值175℃时,就会与电解液发生反应(图2)。锂电池採用聚烯烃(Polyolefin)等多微孔薄膜(Micro-porous Film)将正负电极加以电隔离。这些电极可达到绝佳的机械属性与化学稳定性,且价格合理。聚烯烃的熔点较低,介于135~165℃之间,可作为温度保险丝。随着温度接近聚合物的熔点,便不再具有渗透性(Porosity),在锂离子不再于电极之间流动时关闭电池。

  借用整合式CFE防护提高充电系统层级安全性,第3张

  图2 电池热失控

  此外,正向温度係数(PTC)装置和安全出口(Vent)能提供额外防护,一般而言,负极终端外壳通常採用镀镍钢铁。外壳封闭后,金属粒子会污染电池内部。这些粒子会随着时间进入分离器,导致电池正负极两侧之间的绝缘层衰减,这会造成正负极之间的微小短路,使电子自由流动,最终导致电池故障。这种故障通常只会导致电池电量耗尽,无法正常运作。在极罕见情况下,电池会出现过热、融化、起火甚至爆裂等现象。

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2699303.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存