激光在二维半导体中触发磁性

激光在二维半导体中触发磁性,第1张

科学家使用光子来控制被困在二维半导体中的电荷的“基态”特性

研究人员发现,激光形式的光可以在正常的非磁性材料中触发某种形式的磁性。该实验由华盛顿大学和香港大学的科学家领导,于 4 月 20 日发表在《自然》杂志上。

据共同资深作者、华盛顿大学物理系和该系波音特聘教授徐晓东说,通过在这种细节和精度水平上控制和对齐电子自旋,该平台可以在量子模拟领域得到应用。材料科学与工程专业。

“在这个系统中,我们基本上可以使用光子来控制被困在半导体材料中的电荷的‘基态’特性——例如磁性,”Xu 说,他也是华盛顿大学清洁能源研究所和分子研究所的研究员。工程与科学研究所。 “这是为量子计算和其他应用开发某些类型的量子比特或‘量子比特’的必要控制水平。”

徐的研究团队带头进行了实验,他与共同资深作者、香港大学物理学教授王耀领导了这项研究,他的团队致力于研究支持结果的理论。参与这项研究的其他威斯康星大学教职员工是威斯康星大学物理学和材料科学与工程教授(同时在太平洋西北国家实验室担任联合任命)的共同作者 Di Xiao 和威斯康星大学化学教授兼主任 Daniel Gamelin分子工程材料中心。

该团队使用了二维化合物半导体 WSe2 和 WS2 的超薄薄片。研究人员将这两张纸叠起来形成了“莫尔超晶格”,这是一种由重复单元组成的堆叠结构。

像这样的堆叠薄片是量子物理学和材料研究的强大平台,因为超晶格结构可以将激子保持在适当的位置。激子是成对的“受激”电子及其相关的正电荷,科学家可以测量它们在不同超晶格配置中的性质和行为如何变化。

研究人员正在研究材料内的激子特性时,他们惊奇地发现光触发了正常非磁性材料内的关键磁性。激光提供的光子在激光束路径内“激发”了激子,这些激子在其他电子之间引发了一种长程相关性,它们的自旋都指向同一方向。

“就好像超晶格内的激子开始与空间分离的电子‘对话’,”徐说。 “然后,通过激子,电子建立了交换相互作用,形成了所谓的具有对齐自旋的‘有序状态’。”

研究人员在超晶格中目睹的自旋排列是铁磁性的特征,铁磁性是铁等材料固有的磁性形式。它通常不存在于 WSe2 和 WS2 中。徐说,莫尔超晶格中的每个重复单元本质上就像一个量子点来“捕获”电子自旋。可以相互“交谈”的被困电子自旋被认为是一种量子比特的基础,量子计算机的基本单元可以利用量子力学的独特特性进行计算。

在 2021 年 11 月 25 日发表在《科学》杂志上的另一篇论文中,Xu 和他的合作者在由超薄 CrI3 片形成的莫尔超晶格中发现了新的磁性,与 WSe2 和 WS2 不同,CrI3 具有固有的磁性,即使是单个原子片。堆叠的 CrI3 层形成交替的磁畴:一个是铁磁性的——自旋都在相同的方向上排列——另一个是“反铁磁性的”,其中自旋在超晶格的相邻层之间指向相反的方向,并且基本上“相互抵消, ”据徐说。这一发现还阐明了材料结构与其磁性之间的关系,这可能会推动计算、数据存储和其他领域的未来发展。

“它向你展示了隐藏在二维量子材料形成的莫尔超晶格中的磁性‘惊喜’,”徐说。 “除非你仔细观察,否则你永远无法确定你会找到什么。”

上图显示了光致铁磁性。以黄色显示的激光激发激子 - 电子(蓝色)及其相关正电荷的束缚对,也称为空穴(红色)。这种活动在莫尔超晶格内的其他空穴之间引起长程交换相互作用,使它们的自旋方向相同。

二维半导体二硫化钼的研究及发展现状在光电器件领域具有广阔的应用前景。根据相关公开信息查询显示二硫化钼(MoS2)是一种典型的过渡金属硫属化合物,其二维结构表现出优异的光学性能、热电性能及光电性能,在光电器件领域具有广阔的应用前景。二硫化钼二维材料的独特结构和性能使得其在清洁能源领域表现出了广阔的应用前景。

背景

目前,以硅为代表的传统半导体材料正在面临严峻挑战。通过原理创新、结构改善、工艺进步,科研人员很难再大幅度提升硅基半导体器件的总体性能。“后摩尔时代”已经悄然到来。作为有望取代硅基半导体材料的新一代半导材料,近年来二维半导体的研究进展迅猛。

石墨烯凭借机械强度高、导电导热性好、轻薄、柔性、透明等优势,一度被誉为“新材料之王”,也让二维材料成为了备受瞩目的热点。遗憾的是,石墨烯中独特的碳原子排列,虽然有利于电子轻松地高速流动,但也使之不适合作为半导体。石墨烯没有带隙,无法选择”打开“或者”关闭“电流,而这种二进制开关机制正是现代电子器件的基础。

不过除了石墨烯之外,越来越多的二维材料被人类发现并研究,其中也不乏可以作为半导体的二维材料,例如过渡金属硫族化合物、黑磷等。科学家们已经通过这些二维材料创造出诸多半导体器件,例如:

然而,在二硫化钼(MoS2)为代表的二维半导体器件的制造工艺中,采用电子束光刻技术,将金属电极纳米刻画到这种原子级二维材料的层上,目前会产生一些问题,导致“非欧姆接触”与“肖特基势垒”。

创新

近日,美国纽约大学工学院化学与生物分子工程系教授 Elisa Riedo 领导的团队,报告了原子级薄度处理器制造工艺中的一项重要突破。这一发现不仅将对纳米芯片制造工艺产生深远影响,而且也将鼓舞全世界各个实验室中 探索 将二维材料应用于更小更快的半导体的科学家们。

团队将他们的科研成果发表在最近一期的《自然电子学(Nature Electronics)》期刊上。

技术

他们演示的这种刻蚀技术,采用了加热至100摄氏度以上的探针,超越了在二硫化钼等二维半导体上制造金属电极的普遍方法。科学家们相信,这种过渡金属属于有望替代硅应用于原子级微型芯片的材料。团队开发的新制造方法,称为“热扫描探针刻蚀技术(t-SPL)”,相比于目前的电子束光刻技术(EBL)具有一系列优势。

价值

首先,热刻蚀技术显著提升了二维晶体管的质量,抵消了肖特基势垒。肖特基势垒阻碍了二维衬底与金属交界处的电子流动。其次,不同于EBL,热刻蚀技术使芯片制造者可轻松获取二维半导体图像,然后在期望的位置刻画电极。再次, t-SPL 制造系统有望显著减少初始投入以及运营成本:它们通过在一般环境条件下的运作大幅降低功耗,无需生成高能电子以及超高真空。最后,这种热加工方法很容易通过采用“并行”的热探针来扩展,从而应用于工业生产。

Riedo 表示,她希望 t-SPL 将许多加工过程带出稀缺的净室,带入个人实验室。在净室中,研究人员们必须为这些昂贵的设备争取时间;而在个人实验室中,他们将迅速地推进材料科研与芯片设计。3D打印机这个先例,就是一个很好的类比。有朝一日,这些低于10纳米分辨率的 t-SPL 工具,在普通环境条件下,依靠标准的120伏电源运行,将遍及像她的实验室一样的各个研究实验室。

参考资料

【1】https://engineering.nyu.edu/news/breakthrough-reported-fabricating-nanochips

【2】https://www.nature.com/articles/ncomms8702

【3】Xiaorui Zheng, Annalisa Calò, Edoardo Albisetti, Xiangyu Liu, Abdullah Sanad M. Alharbi, Ghidewon Arefe, Xiaochi Liu, Martin Spieser, Won Jong Yoo, Takashi Taniguchi, Kenji Watanabe, Carmela Aruta, Alberto Ciarrocchi, Andras Kis, Brian S. Lee, Michal Lipson, James Hone, Davood Shahrjerdi, Elisa Riedo. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography . Nature Electronics, 20192 (1): 17 DOI: 10.1038/s41928-018-0191-0


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/5916773.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-08
下一篇 2023-03-08

发表评论

登录后才能评论

评论列表(0条)

保存