为什么在非均匀掺杂的半导体中必然存在电场

为什么在非均匀掺杂的半导体中必然存在电场,第1张

非均匀半导体必然存在浓度梯度,那么就必须要做扩散运动。在扩散的过程中,由于两端电子和空穴浓度不同,必有一端电子浓度大,一端空穴浓度大,由库伦力力形成内建电电场,阻碍扩散运动,并最终达到平衡。

霍尔效应可以测定载流子浓度及载流子迁移率等重要参数,以及判断材料的导电类型,是研究半导体材料的重要手段。还可以用霍尔效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制、放大。用霍尔效应制作的传感器广泛用于磁场、位置、位移、转速的测量。霍尔电势差是这样产生的:当电流IH通过霍尔元件(假设为P型)时,空穴有一定的漂移速度v,垂直磁场对运动电荷产生一个洛沦兹力(3-14-1)式中q为电子电荷。洛沦兹力使电荷产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E,直到电场对载流子的作用力FE=qE与磁场作用的洛沦兹力相抵消为止,即(3-14-2)这时电荷在样品中流动时将不再偏转,霍尔电势差就是由这个电场建立起来的。如果是N型样品,则横向电场与前者相反,所以N型样品和P型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。设P型样品的载流子浓度为p,宽度为b,厚度为d。通过样品电流IH=pqvbd,则空穴的速度v=IH/pqbd,代入(3-14-2)式有(3-14-3)上式两边各乘以b,便得到(3-14-4)称为霍尔系数。在应用中一般写成UH=KHIHB. (3-14-5)比例系数KH=RH/d=1/pqd称为霍尔元件灵敏度,单位为mV/(mA·T)。一般要求KH愈大愈好。KH与载流子浓度p成反比。半导体内载流子浓度远比金属载流子浓度小,所以都用半导体材料作为霍尔元件。KH与片厚d成反比,所以霍尔元件都做的很薄,一般只有0.2mm厚。由(3-14-5)式可以看出,知道了霍尔片的灵敏度KH,只要分别测出霍尔电流IH及霍尔电势差UH就可算出磁场B的大小。这就是霍尔效应测磁场的原理。

网格的大小由下面几个参数决定

nqs q点的数量

x_q q点的坐标

nfs频率(imaginary frequencies)的个数

fiu 哪一个频率

在recover计算中,程序首先从 phq_readin 读入文件(如果这是起始的计算,那 phq_readin 会设置这些参量) frequency 和 tensors 从输入文件中读。

comp_iq 决定这个q点是否计算

comp_irr_iq 决定这个表示是否计算

comp_iu 这个频率是否计算

degaussw

电子在晶格中运动的时候会使晶格发生微小的畸变(由于库伦相互作用),晶格畸变反过来又作用到电子上,是的电子动力学发生变化,导致电子的quasi-particle state有效质量增加,lifetime降低,在场论里面,人们用电子自能来描述由于电声耦合导致的电子动力学的变化。自能的实部描述的是电子能量的变化,虚部描述的是电子lifetime的变化

电子自能算符的对角项作用在unperturbed 电子态上得到

计算电子自能的时候公式里边

delta_approx

这个标签决定在计算声子线宽(linewidth)的时候是否采用double delta approximation

根据EPW forum上roxana(EPW tutorial里面讲超导的主讲人)描述,EPW程序里面关于超导性质 的估算和能隙的计算都是采用的double delta approximation的。

我在计算中测试了使用delta_approx为true和false的两种情况,在k点足够密集以后都得到了收敛的结果,但是两者明显不同。(y?)

prefix.epb 包含最初的k/q点网格上的Hamiltonian、动力学矩阵元、电声耦合矩阵元。

prefix.epmatwp1,crystal.fmt,dmedata.fmt,epwdata.fmt 转化到Wannier表象中的Hamiltonian、动力学矩阵元、电声耦合矩阵元。

ep_coupling

elph

这两个参数是用来计算*.ephmat, *.freq, *.egnv, and *.ikmap这些文件的,如果前面已经得到了这些文件,那么在接下来计算超导的时候就可以把这两个参数关掉,但是用到的cpu核数必须和之前一致,因为ephmat文件个数和核数一样。具体参见 EPW-forum

epbread 这个是读取bloch表象的电声耦合矩阵元的标签,实际上有了 *.epmatwp1文件之后,就不需要读取epb了,而是直接读取 *.epmatwp1和epwdata.fmt文件,并且读取 *.epmatwp1文件没有核数的限制,它是wannier表象的电声耦合矩阵元,设置 kmaps = .true. 就可以了,但是这里其实并没有读取"prefix.kmap" and "prefix.kgmap"这两个文件。只是读取了 *.epmatwp1和epwdata.fmt文件。

ephwrite

这个参数是用来控制是否输出 *.ephmat文件的,这个文件里包含了在Fermi window里fine k、q mesh上前面用 elph , ep_coupling 计算出来的电声耦合矩阵元, *.ephmat文件个数和使用的核的个数相同,这个文件和 *.freq、 *.egnv(分别包含Fermi window里面的声子和电子本征值) *.ikmap(包含Fermi window里面的不可约k点的坐标)加在一起这四个文件包含了求解anisotropic Eliashberg方程的所有信息,求解其他温度的AE方程的时候也会用到这几个文件,但是如果你改了 fsthick 或者k、q点网格或者是使用cpu核的个数的时候这些将无法reuse。

fila2f = 'prefix.a2f'

EPW中提供了一种直接通过Eliashberg谱函数求解各向同性Eliashberg方程的方法,只需要提供 的信息就行了,不过文件的格式以及单位必须和EPW自己产生的文件一致,第一列是声子频率,单位是meV,第二列是谱函数,应该是无量纲数。同时注意控制读写的输入参数应该与这个里面一致 Pade approximation

这个问题一般是由于声子求和规则导致的,EPW中提供了读入实空间力常数来计算声子频率的方法,并且也提供了相应的声子求和规则(与matdyn.f90里面的相同)。只需要改 lifc = .t. ,然后再设置声子求和规则 asr_typ = crystal (我一般都取crystal),同时需要注意的是要保证之前计算QE得到的文件通过pp.py收集起来那个必须有q2r.x产生的实空间力常数文件并且已经被命名为 ifc.q2r ,对于包含SOC的情况,这个文件必须叫 ifc.q2r.xml 并且是xml格式的文件。(这个一般不是太老的脚本pp.py都会自动帮你做这件事情。)参考 phonon bandstructure from EPW and matdyn.x don't match

这段时间被这个问题所困扰,无法重复出文献中的数值,doping之后的单层 电声耦合计算总是偏低,后来发现是smearing和层间距的问题,这里简单介绍一下电子结构计算中smearing的选取。

首先我们要明确为什么要有电子展宽,对于DFT里面很多参量(total energy、charge density)的计算,需要对占据态做求和,求和的过程中就会发现如果我们按照严格的基态的Fermi-Dirac分布来看,费米面以上的占据数严格为0的话,那么我们往往需要非常密集的K点sampling才能取得收敛的结果,因为费米面附近的精度将会大大影响计算结果,是否计入某个点可能会使结果变化很大。为了克服这一点,人们提出使用展宽的方式来使得我们即使在不那么密集的k点取样的情况下也能得到和严格情形下密集取样类似的结果。详见 theos-ElectronicTemperature

tetrahedron &tetrahedron method with Blochl correction

这个方法适合计算体相材料的总能和态密度,这个方法没办法做分数占据。所以计算金属的原子受力和压力张量会有5%到10%的偏差。

mp

可以说是对高斯展宽的一般化,0阶mp分布就对应于高斯展宽。这个方法适合声子的计算,对这种方法的简单介绍可以参考这篇文章 Methfessel-Paxton ,大概思想就是用高阶厄密多项式来展开费米面附近的展宽,这个方法也可以对总能有很好的估计,但是展宽值的选取需要格外小心,展宽太大算出来总能可能不准确,小的展宽需要比较密集的k点取样。一个参考标准就是自由能与总能之差小于1meV/atom(针对VASP中的计算)。对于比较大的超胞MP方法也是很好的选择。不适用于半导体和绝缘体。详见 VASP-ISMEAR ,需要注意的是,这里虽然取的展宽,但是计算的总能是基态的总能也就是对应的0温的总能。但是mp展宽有时候会出现负占据和大于1占据的问题。

marzari-vanderbilt

Marzari为了解决上面的负占据和大于1占据的问题构造出来的方法,也叫做cold-smearing。我在QE的计算能带的example里面看到经常使用mv展宽,但是最近就是在这个上面不小心导致计算doping 的声子的软化和电声耦合远小于文献中的数值,所以计算声子的时候还是尽量使用mp展宽。

Fermi-Dirac

这个按照道理来说是最接近有限温情形下的电子分布的,但是使用这个也有一些问题,比如说想要得到比较收敛的结果需要比较大的展宽(0.1~0.5eV),这时候Fermi-Dirac分布的尾巴就会比较长,就需要算入很多的态,增加计算量。所以也不是说这个就比别的好,有时候可能还不如用一个比较假的smearing比如高斯。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/6227650.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-18
下一篇 2023-03-18

发表评论

登录后才能评论

评论列表(0条)

保存