北京工业大学激光工程研究院的专业介绍

北京工业大学激光工程研究院的专业介绍,第1张

光学是一级学科物理学的二级学科。本学科点主要研究光子的产生、调制、传输、探测、存储和应用,侧重于光电子与光信号处理、光通信技术、声光技术、激光现代制造科学和激光超短脉冲技术,面向光存储、光通信和光制造等高新技术产业。目前正在承担2项“973”、1项“863”、2项北京市自然科学重点基金、5项国家自然科学基金和20余项省部级科研项目的研究。本学科点由我校激光工程研究院和应用数理学院联合组建。激光工程研究院部分的研究方向为:

①激光现代制造科学,主要研究光制造中激光与物质的相互作用,大功率激光光束传输、变换和质量诊断技术,纳米材料与微纳技术;

②激光超短脉冲及宽带可调谐激光技术,主要研究飞秒脉冲激光技术、全固态激光器、全半导体激光器、LD泵浦自锁模激光器;

③激光技术的研究与应用,主要研究全彩色激光表演系统、大功率激光传输光纤与光纤耦合器件、激光测量技术等。

本学科点于1981年获得硕士学位授予权,1985年获得博士学位授予权,1996年开始招收项目博士后,2001年被评为国家重点学科。 光学工程是激光技术与制造技术、信息技术、生物医学、材料科学与工程、自动控制技术等交叉结合的学科。本学科点是我校“211工程”重点建设学科,依托于国家产学研激光技术中心、中德激光技术中心和北京市激光技术实验室,装备有国内乃至东亚地区最先进的激光加工设备和测试仪器。本学科点的特色是:产学研结合与国际合作。

本学科点的研究方向为:

①激光现代制造技术与工程,主要研究大功率激光三维切割与焊接技术、高强铝合金等特种材料的激光加工技术、激光三维快速直接成形、脉冲激光打孔、激光熔覆与表面改性、激光加工软件等;

②激光光电子工程,主要研究大功率固体激光器、大功率半导体激光器、飞秒脉冲激光微加工系统;

③激光微技术,主要研究生物芯片的准分子激光制造技术、纳米粉激光三维微成形、激光制备新材料等。

本学科点是北京市重点学科,具有一级学科硕士、博士学位授予权和工程硕士及同等学历申请硕士学位的授予权。

半导体激光器解析

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。对半导体的早期研究集中在硅上,但硅本身不能发射激光。1948年贝尔实验室的William Schockley,Walter Brattain 和 John Bardeen 发明的晶体管。这一发明推动了对其它半导体裁的研究发展进程。它也为利用半导体中的发射激光奠定了概念性基础。1952年,德国西门子公司的 Heinrich Welker指出周期表第III和第V列之间的元素合成的半导体对电子装置有潜在的用途。其中之一,砷化镓或GaAs,它在寻找一种有效的通讯激光中扮演了重要角色。对砷化镓(GaAs)的研究涉及到三个方面的研究:高纯度晶体的叠层成长的研究,对缺陷和掺杂剂(对一种纯物质添加杂质,以改变其性能)的研究以及对热化合物稳定性的影响的分析。有了这些研究成果,通用电器,IBM和麻省理工大学林肯实验室的研究小组在1962年研制出砷化镓(GaAs)激光发生器。但是有一个老问题始终悬而未决:过热。使用单一半导体,(通常是GaAs)的激光发生器效率不是很高。它们仍需大量的电来激发激光作用,而在正常的室温下,这些电很快就使它们过热。只有脉冲 *** 作才有可能避免过热(脉冲 *** 作:电路或设备在能源以脉冲方式提供时的工作方式),可是通过这种工作方式不能通讯传输。科学家们尝试了各种方法来驱热一例如把激光发生器放在其它好的热导体材料上,但是都没成功。然后在 1963年,克罗拉多大学的Herbert Kroemer提出了一种不同的的方式--制造一个由半导体"三明治"组成的激光发生器,即把一个薄薄的活跃层嵌在两条材料不同的板之间。把激光作用限制在薄的活跃层里只需要很少的电流,并会使热输出量保吃持在可控范围之内。这样一种激光发生器不是只靠象把奶酪夹在两片面包那样,简单地塞进一个活跃层就能制造出来的。半导体晶体中的原子以点阵的方式排列,由电子组成化学键。要想制造出一个在两个原子之间有必要电子键连接的多层半导体,这个装置必须是由一元半导体单元组成,我们称之为多层晶体。 1967年,贝尔实验室的研究员Morton Panish 和 Izuo Hayashi 提出了用GaAs的修改型--即其中几个铝原子代替一些镓,一种称为"掺杂"的过程-- 来创造一种合适的多层晶体的可能性的建议。这种修改型的化合物,AlGaAs, 的原子间隔和GaAs相差不到1000分之一。研究人员提出,把 AlGaAs种植在GaAs 薄层的任何一边,它都会把所有的激光作用限制在GaAs层内。在他们面前,还要有几年的工作,但是通向"不间断状态" 激光发生器-在室温下仍能持续工作的微型半导体装置-的大门已经敞开了。还有一个障碍:怎样发射跨过长距离的光信号。长波无线电波可以很容易穿透浓雾和大雨,在空气中自由传播,但是短波激光会被空气中的水蒸气和其它颗粒反射回来,以至于不是被分散就是被阻挡住。一个多雾的天气会使激光通讯联络终断,因此光需要一个类似于电话线的导管。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/7137925.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-02
下一篇 2023-04-02

发表评论

登录后才能评论

评论列表(0条)

保存