都有哪些知名的生产半导体的公司?

都有哪些知名的生产半导体的公司?,第1张

国外半导体元器件生产厂家名称

http://www.ic-assess.net/facturer/facname/mcaps.html

抄录部分如下:

A V G Semiconductor

AAK Corp

ABB Drives

ABB Hafo A B

ABB Semiconductor

ABB Semiconductors Ag

Aborn Electronics

AC Interface Inc

Acculin Inc

Accutek Microcircuit Corp

Acer Laboratories Inc

Acopian

Acrian Inc

Actel Corp

Action Tungsram Inc

Acumos Inc

Adams-Russell Electronics

Adaptec Inc

Adaptive Logic Inc

Advanced Detector Corp

Advanced Electronic Packaging

Advanced Hardware Architectures Inc

Advanced Linear Devices Inc

Advanced Memory Systems Inc

Advanced Micro Systems Inc

Advanced Microelectronic Products Inc

Advanced Milliwave Laboratories Inc

Advanced Optoelectronics (Applied Solar)

Advanced Power Technology

Advanced Research Associates

Advanced Semiconductor Inc

Advanced Technology Corp

Aeroflex Laboratories Inc

Aeroflex Laboratories, Comstron Div

Agilent Technologies

Airpax Corp, Frederick Division

Alan Industries Inc

Alden Scientific Inc

Aleph International Corp

Allegro Microsystems Inc

Allen Avionics Inc

Allen Bradley Co

Alliance Semiconductor

Allied Electronic &Semiconductor Technology Inc

Allied Electronics Gmbh

Allied Signal Aerospace Company

Alpha Industries Inc, Components and Subsystems Div

Alpha Industries Inc, Semiconductor Div

Alpha Products Inc

Alpha Semiconductor

Altair Corp

Altera Corp

Amax Applied Technology Inc

AMD Inc

American Electronic Laboratories

American Microsemiconductor Inc

American Microsystems

American Power Devices Inc

American Semiconductor Corp

Amex Electronics Inc

AMF Inc

Amperex Electronic Corp

Ampex Data Systems Group

Amplifonix Inc

Amptek Inc

Anadigics Inc

Anaheim Automation

Analog Devices Inc

Analog Solutions

Analog Systems

Analogic Corp

Analytic Instruments Corp

AND

Anders Electronics

Andersen Laboratories Inc

Anodeon Semiconductor Div

Ansaldo S P A - Div Electronica

Antel Optronics Inc

Apex Microtechnology Corp

API Electronics Inc

Appian Technology Inc

Applied Micro Circuits Corp

Aptek Williams Inc

Aptos Semiconductor

Argo Transdata Corp

Aristo-Craft/ L M P Inc

Aromat Corp

Array Microsystems Inc

Artesyn Technologies

Arts Island Products Co LTD

Asahi Kasei Microsystems Co LTD

ASEA Brown Boveri A G

Ashley-Butler Inc

Asiliant Technologies

Askjeselskapet Mikro-Electronik

Associated Electronics Industries

Astec America Inc

Astec Standard Power

Atmel Corp

Aucera Technology Corp

Auctor Corp

Augat Inc

Aurora Semiconductor

Austek Microsystems

Austin Semiconductor Inc

Austria Mikro System Intl

Automatic Coil

Avantek Inc

Avasem

Avens Signal Equipment Corp

Avnet Inc

AVX Corp

AVX Corporation

Aydin Corp

B I Technologies Corp

Babcock Display Products Group

Barnes Engineering Co

Base Two (2) Systems

Basic Electronics Inc

Bedford Opto Technology LTD

Bel Hybrids &Magnetics Inc

Bel Fuse Inc

Benchmarq Microelectronics Inc

Bendix Semicon Products

Bharat Electronics LTD

Big-Sun Electronics Co LTD

Bipolar Integrated Technology Inc

BKC Semiconductors Inc

Black &Decker Corp

Boeing Electronics Co

Bogue Electric Manufacturing Co

Boston Technical Inc

Bourns Inc

Bowmar Inc

Bradley Semiconductor Sorp

Bright Led Electronics Corp

British Thomson-Houston Export Co Ltd

Brooktree

Brown Boveri &Aktiengesellschaft

Bull Micral Of America Inc

Burns &Towne Inc

Burr-Brown Corp

Burroughs Corp

C T S Reeves

C&D Technologies

C-Cube Microsystems

Caddock Electronics Inc

Cal Crystal Labs Inc

Calex Manufacturing Co Inc

California Devices Inc

California Eastern Laboratories Inc

California Micro Devices Corp

Calmos Systems Inc

Calogic Corp

Canadian General Electric Co Ltd

Cantec Electronic Co Ltd

Capar Components Corp

Capar

Capital Equipment Corp

Cardon Corp

Carlo Gavazzi Inc

Carter Semiconductor Inc

Carter Transistor Corp

Catalyst Research Corp

Catalyst Semiconductor Inc

CBS Electronics

Celduc

Celeritek

Central Semiconductor Corp

Centralab Semiconductor (Globe Union)

Centronic Inc, E-O Div

Centronic Ltd

Cermetek Microelectronics Inc

CGEE Alsthom Service SCP

Champion Technologies Inc

Cherry Corp

Cherry Semiconductor Corp

Chicago Miniature Lamp Inc

China Semiconductor Corp

Chip Supply, Micro Devices

Chrontel

Circuit Technology Inc

Cirrus Logic Inc

Citizen Electronics Co LTD

Clairex Technologies Inc

Clare (C P) Division

Clare (C P), Solid State Products

Clear Logic

Coco Research Inc

CODI Semiconductor Inc

Coherent Component Corp

Collins Electronics Corp

Collmer Semiconductor Inc

Comlinear Corporation

Commodore Semiconductor

Communications &Power Industries

Compagnia Italiana Westinghouse

Compagnia Semiconductori Italia SPA

Compagnie Des Dispositifs Semiconductor, Westinghouse

Compagnie General D'Electricita

Compensated Devices Inc

Components Inc

Computer Conversions Corp

Computer Management &Development Service

Comset Semiconductors, SPRL

Comstron Corp

Concurrent Logic

Conditioning Semiconductor Devices Corp

Conexant Systems Inc

Connor-Winfield Corp

Consumer Microcircuits Ltd

Continental Device India Ltd

Control Sciences Inc

Cooper Laser Sonics

Coors Components Inc

Cornes &Company Ltd

Corporation Soneet

Cougar Components

CP Technology Inc

Creation Technologies Inc

Cree Research Inc

Crimson Semiconductor Inc

Crosspoint Solutions Inc

Crouzet Corp

Crydom Co

Crystal Semiconductor Corp

Crystaloid Electronics Co

Crystek Corp

CSR Industries Inc

CTS Corp

CTS Electronics, Knights Div

Curtis Electromusic Specialties Inc

Custom Array Corp

Custom Components Inc

Custom Micro Systems Inc

Cybernetic Micro Systems

Cypress Semiconductor Corp

Cyrix Corp

D C P Research Corp

Dai Nippon Printing Co

Daico Industries Inc

Dale Electronics Inc

Dale Electronics

Dallas Semiconductor Corp

Dalsa Inc

Danaher Corp

Danari International

DAQ Electronics Inc

Data Delay Devices Inc

Data Display Products

Data General Corp

Data Technology Corp

Data Translation Inc

Datalinear

Datalogic Inc

Datalogic Optic Electronics Inc

Datatronics

Datel Inc

Dawn Electronics Inc

Defense Supply Center Columbus (Mil Specs)

Defense Supply Center Columbus (SMD's)

Deico Electronics Inc

Delco Electronics

Delsa Toshiba S A

Delta Electronic Ind Co LTD

Delta Products Corp

Dense-pac Microsystems Inc

Densitron Corp

Denyo Europa Gmbh

Devar Inc

Dexter Research Center Inc

Dialight Corp

Dickson Electronics Corp

Digital Components Corp

Digital Equipment Corp

Digital RF Solutions Corp

Digitron Electronic Corp

Dino Olivetti SPA

Diodes Inc

Dionics Inc

Diotec Electronics Corp

Diotec Elektronische Bauelemente GMBH

Directed Energy Inc

Discon Industries Inc

Display Engineering Services

Displays Inc

Don's Enterprise Co Ltd

Douglas Randall Inc

Dr Ing Rudolph ROST

DSP Group Inc

Dymec Inc

DynaChip Corp

E-SAN Electronic Co Ltd

Eagle-Picher Technologies LLC

Eastron Corp

Eaton Corp, Microwave Products Div

Ebauches S A

Echanges Techniques Internationaux

ECI Semiconductor

ECS Inc International

Ectiva

Edal Industries Inc

EDO Corp

Edsun Laboratories Inc

EE Tech Inc

EG&G Inc, Photon Devices Div

EG&G Inc, Washington Analytical Services Center Inc

EG&G Judson

EG&G Optoelectronics Canada

EG&G Reticon

EG&G Vactec

EIC Semiconductor Inc

Elantec Inc

Elcoma

Eldec Corp

Elec-Trol Inc

Electech Electronics

Electro Corp

Electro-Films Inc, Semi-Films Div

Electro-Films Inc

Electro-optical Systems Inc

Electron Research Inc

Electron Tubes Inc

Electronic Arrays Inc

Electronic Designs Inc

Electronic Devices Inc

Electronic Research Co

Electronic Technology Corp

Electronic Transistors Corp

Electronica Nacional Braileria

Elite Microelectronics

Elite Semiconductor

Elmec Corp Of America

Elmo Semiconductor Corp, Elpaq Division

Elmo Semiconductor Corp

Elpac Power Systems

Eltec Instruments Inc

EM Microelectronics

Emerson Electric Co

Emihus Microcomponents

Energy Electronic Products Corp

Engineered Components Co

English Electric Valve Co Ltd

Enhanced Memory Systems Inc

Envir Communications Inc

Epitaxx Inc

Epitek International Inc

Ercona Corp

Ericsson Components AB

Ericsson Components Inc

ESC Electronics Corp

Espey Mfg &Electronics Corp

ESS Technology Inc

ETEQ Microsystems Inc

Eupec

Eurodia G E S M B H Components

Eurosil Electronics Ltd

Eurotechnique

Everlight Electronics Co Ltd

Exar Corp

Excel Technology International Corp

Exel Microelectronics

Exxon Enterprises Inc

Facon

Fagor Electronic Components Inc

Fairchild Semiconductor Corp

Fallon Industries

Fanon Transistor Corp

Faraday Electronics Inc

FCP Inc

FDK Corp

FEI Microwave Inc

FEM A Electronics Corp

Fema Electronics Corp

Fenwal Electronics

Ferranti Electric Inc

Ferranti Industrial Electronics LTD

Ferrotran Electronics Co

Film Microelectronics Inc

Fine Products Microelectronics Corp

Finlux Inc

First Components

Fischer &Porter Co

FMC Corp

Ford Aerospace &Communications Corp

Fox Electronics

Foxboro I C T Inc

Foxboro I C T

FR Electronics

Franel Corp

French Thomson-Houston Semiconductor

Frequency Devices Inc

Frequency Sources

Frontier Electronics Co LTD

Fuji Electric Co Ltd

Fuji Electric Co

Fujikura America Inc

Fujitsu Kiden Ltd

Fujitsu Ltd

Fujitsu Microelectronics Inc

Fullywell Semiconductor Co Ltd

Futaba Electric Co Ltd

Future Domain Corp

G H Z Technology Inc

G-TWO Inc

Galil Motion Control Inc

Galileo Corp

Galileo Technology

Gazelle Microcircuits Inc

Gch-Sun Systems Co Ltd

GD Rectifiers Ltd

GEC Marconi Materials Technologies Ltd

GEC Plessey Semiconductors

GEC Semiconductors Ltd

Gem Asia Enterprise Co Ltd

General Diode Corp

General Electric Co, Custom Integrated Circuits

General Electric Co, Electro Optics

General Electric Solid State

General Instrument Optoelectronics

General Magnetics Inc

General Micro-Electronics Inc

General Microcircuits Corp

General Semiconductor Inc

General Semiconductor Industries Inc

General Sensors Inc

General Transistor Corp

Genisco Electronics

Gennum Corp

Gentron Corp

Gespac Inc

Giddings &Lewis Advanced Circuitry Systems

Giga

Gigabit Logic Inc

Gilway Technical Lamp

Glorious Sources Co Ltd

Glow-Lite Corp

GMT Microelectronics Corp

Goldentech Discrete Semiconductor Inc

Gould Inc, Microwave Products

GPD Optoelectronic Devices

Graseby Infrared

Grayhill Inc

Great American Electronics

Great Eastern Mfg Co

Greenray Industries Inc

Greenwich Instruments Ltd

GS Technology

GSI Technology

GTE Microcircuits

......

高拉伸范德华薄膜用于适应性和可呼吸的电子薄膜

文章出处: Zhuocheng Yan, Dong Xu, Zhaoyang Lin, Peiqi Wang, Bocheng Cao, Huaying Ren, Frank Song, Chengzhang Wan, Laiyuan Wang, Jingxuan Zhou, Xun Zhao, Jun Chen, Yu Huang, Xiangfeng Duan. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022 , 375 , 852-859.

摘要: 电子系统与不规则软物体的共形集成是许多新兴技术的关键。作者报道了由交错二维纳米片与无键范德华界面组成的范德华薄膜的设计。在交错的纳米片之间,薄膜具有滑动和旋转自由度,以确保机械拉伸性和延展性,以及纳米通道的渗透网络,以赋予渗透性和透气性。独立式薄膜与生物软组织具有良好的机械匹配,能够自然适应局部表面形貌,并与具有高度保形界面的生物体无缝融合,使生物体具有叶栅晶体管、皮肤栅晶体管等电子功能。皮肤上的晶体管允许高保真监测和局部放大皮肤电位和电生理信号。

电子系统与不规则软物体的集成对许多新兴技术越来越重要,包括用于物联网的电子技术和用于监测动态生命体以及用于在个性化医疗和远程保健的情况下诊断和治疗人类疾病的生物电子技术。一个稳健的生物电子系统需要与生物结构进行密切的相互作用,以执行特定的 *** 作,如生物信号的记录、放大和提取,以及传递电或化学刺激。因此,生物电子学的实现取决于许多不同寻常的材料和器件特性,包括电子性能、机械灵活性、延展性或延展性,以确保与动态演变的微观表面形貌的共形和适应性界面;生物与环境间气体和/或营养交换的透气性或透气性,以减少对自然生物功能的干扰。

传统的硬电子材料在导电性、机械响应、渗透性和环境适应性方面与生物软组织表现出本质上的不匹配。硬无机半导体可以做成超薄的薄膜形式,但几乎不能伸缩,而且由于其基本的拓扑限制,无法与非零高斯曲率的不规则几何形状形成保角界面。特殊设计的抗变形结构的发展,如褶皱、屈曲、波浪形或蛇形结构,由于其内在的微观结构波动,带来的是宏观的可伸缩性,而不是微观的整合性。有机或复合半导体薄膜可以制成可拉伸或适形的,但在典型的湿生物环境中通常表现出电子性能不足或稳定性有限的问题。

此外,传统的无机膜或有机薄膜在超薄的悬空形式下通常表现出有限的机械坚固性,需要聚合物[如聚二甲基硅氧烷(PDMS)和聚酰亚胺(PI)]基底支撑来保持结构完整性和特定的多孔结构设计来实现透气性。聚合物基底一般比细胞膜(约10 nm)厚(远大于1 μm),弯曲刚度大,对生物结构动态演化的适应性差。

受生物组合中范德瓦尔斯(VDW)相互作用的启发,作者利用这些相互作用将二维纳米薄片组装成独立的VDW薄膜(VDWTFs),该薄膜与生物软组织具有良好的机械匹配,可以直接适应并与具有超共形和可呼吸的膜-组织界面的生物体融合。VDWTFs在交错的二维纳米片之间具有无粘结的VDW界面,相邻纳米片之间的打开滑动和旋转自由度赋予了不同寻常的机械灵活性、延展性和延展性。交错的VDWTFs还具有纳米通道的渗透网络,以提高渗透性或透气性。

虽然本质上硬的材料(如硅片或硬纸板)的柔韧性可以在超薄膜格式(如硅膜或纸)中增加,但拉伸能力从根本上受到共价化学键的限制,随着厚度的减少几乎不会发生变化。由于固有的拓扑限制,不可能使用这种柔性但不可拉伸的膜来制造非零高斯曲率局部地形的保形界面(例如,用一张纸包裹一支笔,图1)。为了实现不规则几何形状的保形界面,可拉伸性是至关重要的,允许必要的变形以适应局部表面地形。在足够的拉伸应力下,聚合物链之间具有分子间滑移的特定聚合物材料可以被拉伸并适应局部地形(例如,在笔上缠绕聚乙烯薄膜,图1B)。

为了实现具有可拉伸膜的保形界面,需要外部压力来诱导足够的变形,以匹配局部表面形貌,从而导致接触压力可能导致组织变形或损伤(例如,紧紧包裹在指尖旁束)。构建三维几何模型,可视化可拉伸膜在球面上的保角适应过程, 探索 局部变形随接触压力的演化(图1C)。随着荷载的增加,薄膜逐渐适应球形压痕,在保形适应过程中,薄膜网格被拉伸和扩展以适应局部应变和变形。

作者使用一个简化的球形压痕模型来评估形成一个具有给定曲率的表面形貌的保角界面所需的最大接触压力。压痕应变ε由下式推出:

其中, r contact和 r curve分别为接触半径和形貌半径(图1D), k 为与压痕应变有关的常数。总的来说,接触半径和压痕应变随着载荷的增加而增大,直到薄膜和半球之间形成保角界面。达到保角界面所需的最大接触压力由杨氏模量和薄膜厚度决定:

式中 P 0为最大接触压力, E 1和 v 1分别是薄膜的杨氏模量和泊松比, t 为膜厚度, E 2和 v 2分别是球体的杨氏模量和泊松比。 E /(1 - v 2)被视为平面应变模量,人体皮肤为130 kPa,PDMS为4 MPa,聚酰亚胺为2.8 GPa。平面应变模量的差异说明了人类皮肤和柔软的聚合d性体或典型塑料之间的巨大机械不匹配。

利用公式1和公式2,作者可以计算出对于具有不同平面应变模量的材料,在一定的接触压力下,获得具有给定 r curve形貌的保形界面所允许的最大薄膜厚度(图1E)。例如,在最大接触压力 P 0为1 kPa (人类能感觉到的最柔和的触摸为1 kPa)下,为了实现 r curve ~ 5 μm的保形界面,PDMS允许的最大厚度为0.3 μm,聚酰亚胺允许的最大厚度为39 nm。同样,对于具有不同平面应变模量和厚度的材料,作者也可以计算出在给定 r curve为5 μm时形成保角界面所需的最大接触压力(图1F)。

这些分析强调了达到保角界面所需的接触压力与杨氏模量和薄膜厚度成正比,与表面形貌的曲率半径成反比。虽然,原则上,生物组织的接触压力可以通过减少膜的厚度来最小化,对于大多数聚合物材料来说,由于单个聚合物链的特征尺寸的限制,以及在临界厚度(如25 nm)以下机械性能的急剧下降,其厚度不能无限地降低。适用于电子应用的导电聚合物,由于其链长、区域规整性、聚合度等特殊的结构特性,往往表现出较差的力学性能。

在作者的VDWTFs设计中(图1G),悬垂无键纳米片相互交错对接,以最小的界面捕获态建立了宽面积的平面到平面VDW接触,以确保通过片间晶界的优异电荷传输。通过纳米片之间的无键VDW相互作用,VDWTFs与通常以VDW相互作用为特征的软生物组件提供了一种自然的机械匹配。当变形时,无键结合的VDW界面允许纳米片相互滑动或旋转,以适应局部张力或压缩,而不会破坏宽面积的VDW界面和导电通道,这是实现超薄独立式格式中不同寻常的拉伸能力和结构稳定性的必要条件。VDWTFs的机械变形很容易转化为片间滑动或旋转,以适应局部应变和变形,克服拓扑限制,从而赋予其特殊的延展性和对不规则和动态变化的表面形貌的适应性。最后,VDWTFs具有纳米通道的渗透网络(由纳米片厚度决定:约3 nm),围绕交错的纳米片进行气体和/或营养物质的渗透,这对生物电子学的透气性至关重要。

这种电子性能和机械性能的结合源于交错二维纳米片之间的VDW相互作用,在典型的化学气相沉积生长薄膜(CVDTFs)中很难实现(图1H)。CVDTFs (其典型的多晶结构由侧缝结构域组成)的电和力学性能受到晶粒尺寸、晶粒取向、形状和晶界缺陷密度的强烈影响。在CVDTFs中,晶粒内部坚硬而强的共价键合以及晶界处的无序键合(图1H)会导致裂纹和断裂的形成,这些裂纹和断裂在变形时沿着晶界传播,从而在最小应变下引起机械破碎和电子崩解。

采用插层剥离法制备二硫化钼(MoS2)纳米片油墨,并采用旋涂法组装成VDWTFs。扫描电子显微镜(SEM)和透射电子显微镜(TEM)的研究显示了一个交错的纳米片薄膜(图2A和2B),薄膜总厚度约为10 nm。MoS2纳米片相互交错对接(垂直方向上平均有3-4个纳米片交错排列),形成大面积的平面到平面的VDW界面(厚度约为3 nm,横向尺寸从小于1 μm到数μm)。即使在独立格式中,宽面积无粘结的VDW界面允许相邻的纳米片相互滑动或旋转,以适应局部结构扰动,并减少应变引起的裂缝和断裂,从而确保结构完整性。例如,连续的独立式的VDWTFs可以很容易地漂浮在水面上(图2C),完全重复折叠而不撕裂,悬挂在开孔上而不破裂(图2M)。相比之下,独立的多晶CVDTFs很容易在水中破碎(图2D),而且太脆弱,无法悬浮在空孔上。

当拉伸应变为43%时,VDWTFs的应力-应变曲线表现出良好的线性关系(图2E),杨氏模量(约47.3 MPa)比体相MoS2 (约200 GPa)小三个数量级。模量的大幅降低表明,薄膜变形转化为纳米片之间的层间滑动或旋转,而不是固有的晶格扩展(图2F)。超过线性状态后,随着拉应变的进一步增大,应力几乎没有增加,表明层间滑动或旋转逐渐达到极限,并开始局部破裂,在较高的拉伸应变下进一步恶化,并导致在>120%的拉伸应变下完全破裂。

作者比较了VDWTFs和CVDTFs的电子性质作为施加应变的函数(图2G)。由于CVDTFs在独立状态下不能保持宏观结构的完整性,所以测量是在PDMS基底上支撑的薄膜上进行的,以确保有一个稳健的比较。对于CVDTFs,在拉伸应变为 2.5%时,相对电阻呈逐渐线性增加的趋势,当拉伸应变超过2.5%时,相对电阻急剧增加,表明CVDTFs在宏观上开始断裂。而VDWTFs在拉伸应变为>55%时才出现快速的电阻增加,且在多次应变循环下可恢复电阻稳定。当拉伸应变为>55%时,电阻急剧增加,表明微观裂纹的形成和导电通道的大幅减少。

作者评估了VDWTFs对微观表面形貌的适应性和一致性。SEM研究表明,VDWTFs不仅具有直径4.3 μm的微球阵列(图2H),而且具有孤立的单个微球、两个或三个微球团簇(图2I),它们以共形方式包裹在微球周围而不撕裂。相比之下,相同表面形貌的CVDTFs保角性差得多,并显示出大量的微裂纹(图2J和2K),特别是在高应变或应力集中区域(如微球脚或相邻两个微球之间的空间)。

表面润湿性对于确保电子膜和生物体之间的适当粘附是至关重要的(图2L)。由于在单个纳米片构建模块中具有丰富的边缘结构,VDWTFs表现出更好的润湿性(水接触角为40.2o),比CVDTFs (水接触角为76.3o)的润湿性能更好,这是与湿生物组织紧密结合的理想条件。

最后,膜的透气性或透气性是生物电子应用中气体或养分与环境交换所必需的。水蒸气透过率研究显示,悬置在裸眼上的10 nm厚和30 nm厚的悬空VDWTFs的水蒸气透过率分别为34和26 mg·cm-2·h-1 (图2M和图2N),大约是典型的皮肤失水率(TEWL)的6-8倍(4.4 mg·cm-2·h-1)。连续VDWTFs的这种通透性归因于交错纳米片结构,交错纳米片结构周围缠绕着高度互联的纳米通道网络(通道厚度由纳米片厚度决定,约为3 nm)。

由于其特殊的延展性、适应性和透气性,VDWTFs可以直接与生物体融合,形成无缝的电子-生物混合体。尽管之前的尝试试图用电活性材料来增强植物功能,或简单地将植物用作非常规的支持基底,作者的方法是将VDWTFs转移到叶子上,形成叶栅晶体管,其中所述植物叶片起调制门的作用,并构成所述装置的有源部分。作者选择叶肉中含有丰富电解质的 Senecio mandraliscae 的叶子作为模型系统来研究叶栅晶体管(图3A)。对于叶栅晶体管的 *** 作(图3B),VDWTF通道与蛇形网格Au电极接触(图3C),以防止粗糙的叶子表面的局部应变破坏Au薄膜电极,而插入的钨探针与所述叶片内的电解液建立电接触,以形成栅电极。通过光学显微镜(图3D)和SEM结果(图3E)证实,转移的VDWTFs形成了一个高度共形的完全顺从的界面,。

叶栅晶体管的功能依赖于离子门效应(在叶栅电解液中)来调节VDWTFs的电子特性,因此微观共形界面是有效门控的必要条件。叶栅晶体管具有典型的n通道传输曲线,开关比约100 (图3F-3H)。相对较低的开/关比受到晶体管通道的直接漏电流(从叶栅通过直接电阻耦合)的限制。具有高保形界面和高效的栅耦合,叶栅晶体管可以在生物系统耐受的低工作电压下工作。

VDWTFs可以通过一个高度适形的界面转移到人体皮肤上形成皮肤栅晶体管。在皮肤中,电解质有助于导电,调节pH值水平,并控制身体的水合系统。VDWTFs与皮肤纹理的适形集成导致了皮肤栅晶体管,其中人体皮肤中的电解质有效地调节了VDWTFs中的传导(图4A和4B)。适当的皮肤栅晶体管功能需要保形界面,VDWTF通道和皮肤之间有密切的相互作用,其中皮肤可以用一个由电容器和电阻组成的并联电路模拟,真皮和下面的皮下组织可以用一个电阻模拟(图4B)。

作者研究了独立式VDWTF在Ecoflex硅橡胶制成的前臂皮肤复制品上的一致性,并将其与在1.6 μm厚PI基底上支撑的相同VDWTF进行了比较(图4C)。独立的VDWTF适应皮肤纹理,并使一个良好的适形界面没有明显的开裂或撕裂。相比之下,1.6 μm厚的PI基底和VDWTF与PI基底的保角接触要少得多,大多数细微的皮肤纹理都被隐藏了,比如表面皱纹和凹坑(图4C)。轮廓测量高度剖面分析显示,覆盖了独立VDWTF的皮肤复制体的表面形貌与未覆盖VDWTF的皮肤复制体的表面形貌基本相同(图4D和4E),表明界面为完全保形界面。相比之下,对于1.6 μm厚PI基底支撑的VDWTF覆盖区域(图4F和4G),表面形貌基本平坦,说明1.6 μm厚的PI基底已经太厚,无法自然适应皮肤纹理,无法形成微观共形界面。

薄膜与表面形貌形成保角界面的能力可以由抗弯刚度决定。多层膜的有效抗弯刚度( EI )可以描述为:

式中,中性的 h 表示中性机械平面, i 表示薄膜的第 i 层, hi 、 Ei 、 vi 分别代表厚度、d性模量和泊松比, N 为层数。由于薄膜厚度小,d性模量低,10 nm厚度的VDWTF薄膜的抗弯刚度为4.2 10-9 GPa·μm3,比1.6 μm厚度的VDWTF/PI薄膜(0.97 GPa·μm3)的抗弯刚度小了约8个数量级。

移植到人体皮肤上的VDWTFs对变化的皮肤纹理表现出良好的自然适应性,并在拉伸、挤压和松弛循环过程中保持适形接触,而不出现明显的破裂或剥落(图4H),突出了VDWTFs对动态进化的生物基质的高度适应性。相比之下,转移到人体皮肤上的CVDTFs在皮肤受到类似变形时容易断裂和剥落。图4I显示了皮肤复制品上两种薄膜的剩余面积与挤压和拉伸循环的数量之间的关系。由于独立的CVDTFs不够坚固,无法进行处理和转移,因此它们被转移到具有甲基丙烯酸甲酯(MMA)基底支撑的皮肤复制品上。在转移过程之后,一旦MMA被丙酮蒸汽溶解掉,CVDTFs迅速脱落。剩余面积瞬间减小到原始面积的50%左右,经过100次拉伸循环后,进一步减小到原始面积的40%,且大多为断裂区域。断裂和剥落是由于膜-皮肤界面不稳定,这与其有限的伸展性、整合性和较差的润湿性有关。相比之下,VDWTFs对动态变化的皮肤复制品表现出优越的拉伸性能和一致性,没有明显的断裂或剥落,在重复挤压和拉伸循环后,基本上保持100%的表面覆盖。

在适用于生物系统的低工作电压下,皮肤栅VDWTF晶体管的输出和传输曲线显示了预期的晶体管功能(图4J和4K)。此外,皮肤栅VDWTF晶体管在经历各种机械变形时也能保持稳定运行(图4L),为在电生理信号探测和放大方面的应用奠定了基础。

考虑到许多生物电位信号显示瞬态响应,作者评估了皮肤栅晶体管的频率响应。皮肤栅晶体管的响应时间τ是通过测量在20 μs脉冲下100 mV栅电压下的电流响应来探测的(图5A)。用指数函数拟合实验数据,得到了7μs的响应时间(图5B)。此外,皮肤栅晶体管的截止频率(跨导比其平台值下降3 dB)约为100 kHz (图5C),这足以监测来自人体的大多数电生理信号。

作者研制了用于心电监测(ECG)的皮肤栅VDWTF晶体管。在本测量中,将VDWTF垫放置在左前臂上,将栅极贴附在对称的位置(右前臂) (图5D),每个VDWTF垫与附近的Ag/AgCl电极工作以进行比较。在传统Ag/AgCl电极测量心电时,常见的挑战是由于滑动、一致粘附引起的运动伪影,以及皮肤变形引起的电极-皮肤界面的机械失配,导致信噪比(SNR)大大降低,从运动前的44.3 dB (图5E)下降到运动时的28.5 dB (图5F和5G)。使用保形皮肤栅晶体管,运动伪影得到了缓解,实现了基本相当的信噪比,在人体运动前为49.8 dB (图5E),在人体运动时为49.2 dB (图5F和5G)。在运动伪影减少的情况下,皮肤栅晶体管记录的心电信号具有清晰的P波、QRS波和T波,在人体运动过程中没有异常偏差,基线相对稳定(图5F和5G)。相比之下,这种精细信号不易被Ag/AgCl电极分辨(图5G)。

高保真、实时的脑电图(EEG)记录对于监测大脑活动、研究认知行为和深入了解各种神经系统疾病都很重要。大脑活动可以分为5个频段:δ波(0-4 Hz)、θ波(4-8 Hz)、α波(8-12 Hz)、β波(12-30 Hz)和γ波(>30 Hz),每个频段都与不同的精神状态相关。为了测试它们获取高质量神经生理信号的能力,根据国际10-20脑电图电极放置系统,作者将VDWTF晶体管放置在前额左侧(Fp1),并记录相对于放置在左侧枕部的参考电极(O1)的电压差异(图5H)。当受试者闭上眼睛放松时,脑电背景通常以后显性α节律(后显性节律)为特征,具有显著的8-12 Hz (α)振荡(图5I和5J),与冥想、正专注等大脑活动相对应,可降低应激水平。α节律通常在睁眼时显著衰减,从皮肤栅晶体管测量的脑电图信号谱图中可以清楚地看到(图5K),显示α节律的动态活动与周期性的闭眼和睁开相关。

在这里,作者报道了由二维纳米片组装而成的机械坚固的独立式VDWTFs,用于高拉伸、适应性、保形和透气的薄膜电子器件。纳米片之间的无键VDW界面使滑动和旋转的自由度,以呈现非凡的机械灵活性、延展性和延展性。交错纳米片结构还具有纳米通道的渗透网络,具有优异的渗透性或透气性。超薄的独立式VDWTFs结构坚固,与生物软组织具有良好的力学匹配,自然适应显微地形,并通过高度共形界面直接与生物体结合,赋予生物体电子功能。因此,VDWTFs可以作为通用的电子薄膜,主动适应环境,同时保持足够的电子性能,用于传感、信号放大、处理和通信。

第一章

物理

D IOP出版的学报: 应用物理学

J。 Phys。 D : Appl. Phys。 41 (2008) 015005 (5pp)

doi :10.1088/0022-3727/41/1/015005

氧气分压的作用在哥斯达黎加被掺杂的

TiO2铁磁性摄制

肖?张, Weihua Wang, Luyan李, Yahui城, Xiaoguang罗和

电子,

学院信息技术科学, Nankai大学,天津300071,中华人民共和国

电子邮件的惠Liu1部门

[email protected]

接受了2007年10月15日,以最后的形式2007日在网上出版

12月12日2007日在

stacks.iop.org/JPhysD/41/015005 11月的9日

抽象

多晶的哥斯达黎加被掺杂的TiO2films由co飞溅哥斯达黎加和TiO2目标和O2混合物

在纯净的Ar制造以各种各样的氧气分压。 铁磁性在所有

样品被观察,并且居里温度很好在390 K.之上。 影片的饱和磁化

显示对氧气成长压力的强的依赖性,当保留恒定的哥斯达黎加

含量时。 铁磁性在影片被提高被放置以因而

是氧气短少的更低的氧气压力,表明氧气空位的一个重要角色在

哥斯达黎加被掺杂的TiO2的铁磁起源。

(有些图在这篇文章上在仅颜色在电子版本)

1. 介绍

从在室温铁磁性的发现上在

Co被掺杂的anatase TiO2 [1],这在所谓的spintronic设备有

成为的一个战胜的焦点在

材料学领域为转折金属被掺杂的被稀释的

磁性半导体(DMSs)的研究,由于他们

潜在的应用。 设备的这新一代有不挥发性

、更高的数据处理速度、更低的电力的消耗量

和增加的综合化密度的好处

,比较常规

半导体装置[2]。 迄今,许多努力为

查寻在宽被结合的二氧化物半导体被执行了高居里温度

(TC)铁磁性例如TiO2, ZnO和

SnO2,服用Co、Ni、哥斯达黎加、Mn和V [1-11]。 然而,

查寻高居里温度(TC)铁磁性在

宽被结合的二氧化物半导体例如TiO2, ZnO和

SnO2,服用Co、Ni、哥斯达黎加、Mn和V [1-11]。 然而,

变化在过程中在样品成长和岗位

成长期间互相使实验性结果相当

矛盾。当一些研究工作表明时

铁磁性在DMSs起源于次要

阶段金属在它成群[9, 10],其他小组报道

铁磁性是内在的以缺乏这样

沉淀物[1-8]。 理论上,几个模型

用于解释铁磁性用DMSs的不同的类型。

例如,经常被援引的Ruderman-Kittel-Kasuya-

Yosida (RKKY)类型为Mn解释的模型: GaAs DMS

根据sp-d交换在sp巡回载体

和转折金属掺杂的元素之间[12的]地方

d状态。 Superexchange、双交换和交换通过

一定的磁性polarons (BMPs)也被祈求

解释铁磁命令在室温

[3之上]。 而且, Coey等[13]在氧化物延伸BMPs

入F中心斡旋的BMPs (FC BMPs)模型

解释高TC铁磁性。在转折金属被掺杂的DMSs之中,基于TiO2的

DMSs由于他们的特别多种潜在的应用

在光电探测器、催化剂、太阳能电池、消毒器具在

医院,防护涂层和透明举办的电极

广泛被学习了。 此外, TiO2 anatase结构的

格子是合理地搭配得不错的与Si,

做它一名头等候选人为未来综合化用基于Si的

设备[3]。 到现在,高TC铁磁性在基于TiO2的

DMSs一般认为一种内在现象

[13, 14]。

并且它现在知道被掺杂的过渡金属的

磁矩强烈取决于准备

方法和条件,即使仍然没有确定

协议,关于DMSs磁性的本质

由不同的方法和不同的小组现在准备了。

最近,它被发现结构瑕疵在铁磁性的

起源在nano-和唯一水晶哥斯达黎加扮演一个重要

角色: TiO2 DMS系统[3,4]。 一定数量的

实验工作表示,有铁磁

行为和与氧气相关的点瑕疵之间的一种

接近的交互作用在基于TiO2的DMSs [15, 16]。所以,

除理解铁磁性的微观起源以外

在DMSs,提供具体准备

情况和DMSs之间磁性行为的更加详细的

交互作用也是非常重要的。

在这项研究,多晶的CrxTi1 O2影片以哥斯达黎加

含量x = 0.05由co飞溅哥斯达黎加

和TiO2目标在一个纯净的Ar和O2混合物制造。 各种各样的

氧气分压(PO2)在哥斯达黎加被掺杂的TiO2影片

用于改变氧气空位的集中。

密切关系在铁磁性和氧气压力之间

被找到,表明氧气空位的一个重要角色在

哥斯达黎加被掺杂的TiO2铁磁性。

2.Experiment

多晶的Cr0.05Ti0.95O2 ?lms由co飞溅

哥斯达黎加(99.99制造 基体转动在30转每分钟在证言期间

,并且从目标的距离到基体约为

16 cm。TiO2目标的RF飞溅力量

被保留了在300 W。 影片在玻璃和kapton基体

被放置了为结构和磁性的测量

,分别。 基体温度被保留了

在400 ?С在证言期间。?lm厚度

被保留了在~200毫微米并且取决于Ambios XP-2TM

表面赞成锉刀。 作为这些样品构成和

生长率改变用不同的氧气压力,在

哥斯达黎加目标申请的dc飞溅力量必须被改变

在8-13 W之内为了得到用不同的哥斯达黎加含量

Cr0.05Ti0.95O2.36的有名无实的构成(

0.03 <x<0.07)的多晶的CrxTi1 O2影片

被放置在另外氧气分压下(即。 0, 0.04,

0.08和0.16 Pa)。X-射线光电子分光学分析

哥斯达黎加原子分数((XPS)多技术

式样S600)和X-射线fiuorescence分光学((XRF),

Magix PW2403)。在本文描述的样品的

哥斯达黎加含量在x ~ 0.050 ±之内0.003的范围

。 影片的微结构描绘的

是为X-射线衍射计((XRD) Philips x’计划评审技术赞成, Cu Kα)

和传输电子显微镜术((TEM) JEOL 2010)。

磁性在温度范围

5-395 K被测量了使用量子设计有形资产

测量系统(PPMS-9)装备一个振动的

样品磁力仪(VSM)和一个superconducting的量子

干涉设备(乌贼)磁力仪(MPMS-5S)。影片的光学透射率由一个

紫外可看见的分光光度表(Shimadz 3101个人计算机)测量。

电子输运性质使用口音HL-5550PC

系统被测量了。

3. 结果和讨论

图1显示准备的XRD范围Cr0.05Ti0.95O2

影片用(a) 0 Pa不同的PO2, (b) 0.04 Pa、(c) 0.08 Pa和

(d) 0.16 Pa。 anatase的标准绕射图(坚实)和

金红石(该死的) TiO2也显示。

第二章

图1。 XRD样式(日志称)的Cr0。 05Ti0.95 O2影片

准备在另外PO2之下。 样品的所有高峰位置

对应于anatase的标准绕射图或TiO2

金红石结构。 对应于哥斯达黎加

或哥斯达黎加二氧化物的衍射峰顶在表1不存在,表明

可发现其他阶段不存在于哥斯达黎加: TiO2影片。 它能从

图1也被看见全宽在衍射峰顶的半

最大值平稳地变宽,当PO2减少,表明

在颗粒状大小的减退。 TEM测量

进行为了让进一步洞察进入哥斯达黎加被掺杂的TiO2

影片微结构。 图2显示Cr0.05Ti0.95O2样品的

高分辨率TEM图象与PO2 = 0.04和

0.08 Pa。 它能被看见影片的平均粒径

与PO2 = 0.04 Pa约为7.0毫微米。然而,当PO2

增加到0.08 Pa,平均粒径增加到

9.8毫微米,趋向是与XRD结果符合。

曲线在表3提出了是Cr0.05Ti0.95O2典型的

磁化圈?lms被放置在另外PO2之下在

室温。 样品是全部铁磁的以

清楚地hysteretic行为。 它知道哥斯达黎加金属是

顺磁的在高温度和antiferromagnetic在以下

308 K。 唯一的铁磁哥斯达黎加二氧化物是CrO2以TC

386 K和女士= 2.03 μB/Cr。

要歧视内在

铁磁性从那些哥斯达黎加或哥斯达黎加二氧化物,哥斯达黎加被掺杂的TiO2

样品零的领域冷(ZFC)和领域冷的(FC

)磁化曲线被计量从5到390 K

作为以下做法。样品在

零的领域首先冷却了从390到5 K,然后0.5 kOe

磁场是应用的,并且磁矩记录了

以增加从5的温度到390 K获得

ZFC曲线。 然后样品从390冷却了到5 K

在0.5 kOe之下的同一个领域。 在那以后,

磁矩记录了以增加从5的

温度到390 K获得FC曲线。

上部插页在表3

显示Cr0.05Ti0.95O2样品的代表的ZFC/FC

与PO2 = 0 Pa。 它能被看见清楚的分歧

在ZFC和FC曲线之间存在390 K,

显露Cr0.05Ti0.95O2样品的TC很好在

390 K.之上。 获得的TC表明Cr0.05Ti0.95O2影片

铁磁性不是从CrO2群并且

排除其他可能的铁磁贡献从

反铁磁性阶段,例如哥斯达黎加(与Neel

′温度, TN ≈ 311 K)和Cr2O3 (TN ≈ 308 K)。

图3。 Cr0的计划看法HREM图象。 Ti0. O2样品

准备在另外PO2之下: (a) 0.04 Pa和(b) 0.08 Pa。

图3。 Cr0滞后回线。 Ti0. O2 ?lms被放置下面

PO2 = 0, 0.04和0.08 Pa在300 K。 上部插页显示

ZFC/FC曲线为?lms与PO2 = 0 Pa测量了在0.5 kOe。

底下插页显示饱和的磁化曲线对

PO2在300 K。另一个重要特点在表3是

有名无实的饱和的磁化是~0.42 μB/Cr与

PO2 = 0 Pa,单调地减少对~0.09 μB/Cr

PO2 = 0.16 Pa。 Cr0.05Ti0.95O2影片的磁化

显示对PO2的强的依赖性,如被说明在底下

插页?gure 3。 这行为表明PO2在

飞溅过程中在哥斯达黎加TiO2系统的铁磁起源

扮演一个重要角色。它能从Cr0.05Ti0.95O2影片矫顽性减少以增加的颗粒状大小

的图3也被看见。

根据Arcas等,

所有铁磁样品矫顽性与

有效的magnetocrystalline各向异性现象恒定的K和

自发磁化女士有关通过联系[17]

HC = pK/Ms, (1)

那里p是取决于磁化过程的特殊

类型的一个无维的因素。 例如,

琢石者Wohlfarth模型给p = 2为noninteracting唯一

领域磁性粒子以单轴的磁性各向异性现象

[18的]理想。 你能从惯例(1)看K和

女士罐头?uence矫顽性。 为Cr0.05Ti0.95O2影片在

这项研究中,饱和的磁化改变与PO2和

因而以粒度。 所以,为了消灭

在女士fiuence在粒度依赖矫顽性的研究,

我们使用各向异性现象恒定的K ∝ HCMs作为显示

而不是HC.Figure 4展示依赖各向异性现象恒定

为Cr0.05Ti0.95O2影片放置在另外PO2之下

的粒度。 它能被看见各向异性现象常数

增加以越来越少的粒度,近似地以下

K ~ 1/D行为,可以解释用领域墙壁

pinningatgrainboundarieswhichbecomesprogressivelymore

高效率,当晶界的体积分数增加

[19,20]。 因此,被观察的1/D依赖性建议在

磁化方向上的变化通过过程仍然发生

相似与领域墙壁行动在大小下来到6毫微米,

在nano被构造的磁性金属报告的那小于

[20]。 然而,作为DMSs和nano被称的铁磁磁铁

磁性是复杂,

详述的研究工作应该执行为了

揭露粒度相关的磁性在转折

金属被掺杂的DMSs。最近,理论研究建议氧气

空位在电子结构在Co-有一伟大

在fiuence和铁磁性, Fe-, Cu掺杂了anatase和金红石

TiO2 [21-24]。 并且故意的总能表明

在过渡金属附近位于的氧气空位比那

近的钛稳定。 结果,转折金属原子

易于夺取空位电子,在

费密水平附近将改变总密度状态和因而导致

铁磁性的改进。 基于以上提到的

基本的框架,铁磁性在我们的哥斯达黎加被掺杂的

TiO2 ?lms可以把归咎到氧气空位。 不用氧气

出现在证言期间,在哥斯达黎加被掺杂的

TiO2应该有大量氧气空位?lm. 所以,

磁化是大。 在更高的PO2之下,氧气

空位部份地将补偿,导致氧气

空位的减少。如此总值磁化

减少与增加的PO2,如所显示?gure 3。 我们的

结果于最近报告也是相似的关于Ni被掺杂的TiO2

[25]和Fe被掺杂的TiO2 [26],氧气空位

可能通过焖火大气的 *** 作的地方

被斡旋。 此外,演算也表示,

转折金属原子和氧气空位之间的互作用

敏感地取决于他们之间的距离[21-24]。 如果

空位是进一步除转折金属原子之外,它

?在磁化最终将减少uence或

被减少了。 比较实验和演算

结果,平均磁矩每个哥斯达黎加原子在这里

氧气穷的样品在一个更低的范围。 这也许

部份地归结于氧气空位的相对地点,

不在转折金属原子最近的附近状态

。图5 (a)显示传输范围哥斯达黎加被掺杂的

TiO2影片被放置在另外PO2之下。 范围

影片显示挥动类型波纹,是光的干涉的

特征。 影片的transmittances

与更高的PO2那高于与更低的PO2。 当

波长到达紫外范围,由于

根本吸收在带隙附近,

透射率尖锐减少。 它能被看见

吸收端单调地转移到更短的波长,当PO2

增加,关联与在光学带隙上的

变化(即)。 即可以是坚定的从

吸收系数α被计算作为事件光子能量

E (hv) [27,28功能] :

αhν = B (hν -即) 2, (2)

那里B是在被放置的影片关联以水晶结构

命令的常数。然后,即能

通过外推线性部分获得到光子

能量轴,如图5 (b)所显示。 获得即

哥斯达黎加被掺杂的TiO2 ?lm没有氧气是~3.33 eV,与

DeLoach报告的价值是定量地一致的

等[29]。 它能从即增加与增加的PO2的插页图也

被看见5 (b)。

电子测量表示,所有样品霍尔系数的

标志是正面的在室温,

建议孔统治传输机制。

然而,所有样品被放置在另外PO2之下

高度绝缘以价值在我们的仪器附近

测量极限>1011 /square的薄层电阻。

因此,抵抗力大于~106cm为考虑

厚度~200毫微米的所有样品。 我们的样品电介质

状态于最近报告是相似的关于转折金属

被掺杂的TiO2 [25,26]。4. 结论

总而言之,多晶的Cr0.05Ti0.95O2影片

由co飞溅方法准备在另外PO2之下。

铁磁性在所有样品很好被观察以TC在

390 K.之上。 影片的饱和磁化显示对

氧气成长压力的强的依赖性,当保留

恒定的哥斯达黎加含量时。 铁磁性在

影片被提高被放置以因而是氧气短少

的更低的氧气压力,表明氧气空位的一个重要角色

在哥斯达黎加被掺杂的TiO2的铁磁起源。

承认

这工作由节目在大学(NCET-04-0244

)和以下津贴支持为新的世纪

优秀天分: 中国(没有50401002和

10504024)的全国自然科学基础,全国高技术

(R


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8509379.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存