求这些化学基础知识的答案

求这些化学基础知识的答案,第1张

一、常见物质的化学式:

氧化铁:FeO 盐酸:HCl 硫酸铜:CuSO4

硫酸铁:Fe2(SO4)3 氯化铁:FeCl3 硫酸钡:BaSO4

氯化铜:CuCl 氢氧化钡:Ba(OH)2 硝酸钡:Ba(NO3)2

氯化铝:AlCl3 硫酸铝:Al2(SO4)3 硝酸银: AgNO3

氢氧化铁:Fe(OH)3 氯化银:AgCl 碳酸钙:CaCO3

氢氧化铜:Cu(OH)2 硝酸铜:Cu(NO3)2 氢氧化铝:Al(OH)3

硫酸亚铁:FeSO4 氯化亚铁:FeCl2 碳酸钠:Na2CO3

氯化钙:CaCl2 氧化钙:CaO 氢氧化钙:Ca(OH)2

氯化钠:NaCl 氯化钡:BaCl2 硫酸铵:(NH4)2SO4

碳酸氢铵:NH4HCO3 氨水:NH3·H2O 碳酸钾:K2CO3

氧化铜:CuO 亚硫酸钠:Na2SO3 硫酸钠:Na2SO4

二、一些离子的颜色:

1、 铜离子(Cu2+):蓝色 例:CuSO4溶液

2、 铁离子(Fe3+):黄色 例:Fe2(SO4)3溶液

3、亚铁离子(Fe2+):浅绿色 例:FeSO4溶液

三、一些沉淀的名称和颜色

1、碘化铅(PbI2)金黄色粉末或结晶;

2、氢氧化铜(Cu(OH)2)蓝色沉淀;

3、氢氧化铁(Fe(OH)3)红褐色沉淀;

4、碳酸钙(CaCO3)白色沉淀;

5、硫酸钡(BaSO4)白色沉淀;

6、氯化银(AgCl)白色沉淀;

7、碳酸钡(BaCO3)白色沉淀;

8、氢氧化镁(Mg(OH)3)白色沉淀.

四、一些物质的俗名:

氢氧化钠:烧碱;

氢氧化钙:熟石灰;

碳酸钙:大理石等;

碳酸钠:纯碱;

食盐:氯化钠;

干冰:二氧化碳固体;

食醋:醋(也许是醋酸);

铁锈:三氧化二铁;

铜绿:碱式碳酸铜;

碳铵:酸式碳酸铵;

胃舒平:复方氢氧化铝;

碱石灰:即钠石灰;

生石灰:氧化钙;

草木灰:一种碳酸盐(不太好说,成份太多了);

尿素:相当于碳酸的二酰氨;

水垢:“水垢”也就是“水碱”,就是在水的状态发生变化时(特别是加热时),水中溶解的钙离子(Ca2+)和镁离子(Mg2+),与某些酸根离子形成的不溶于水的化合物或混合物,其主要成分是碳酸钙;

小苏打:碳酸氢钠;

沼气:甲烷(主要成份);

酒精:乙醇乙醇(主要成份);

五、一些结晶水合物的化学式和名称:

胆矾、蓝矾(CuSO4·5H2O):五水硫酸铜;

纯碱晶体(Na2CO3.10H2O):十水碳酸钠;

六、一些离子的鉴定:

1、硫酸根离子(SO42-):先加入Ba(NO3)2溶液(含钡溶液),若有沉淀产生,再加入硝酸,若沉淀不溶解,则含有硫酸根离子;

2、氯离子(Cl-): 先加入AgNO3溶液(含银溶液),若有沉淀产生,再加入硝酸,若沉淀不溶解,则含有氯离子;

3、碳酸根离子(CO32-):加入酸性物质,若产生气泡,再把搜集到的气体通入澄清石灰水中,若澄清石灰水变浑浊,则含有碳酸根离子;

4、铵根离子(NH4+):加入NaOH溶液并加热,若有能使湿的红色石蕊试纸变成蓝色的气体产生,则含有铵根离子。

注:以上证明,都要先取待测溶液少量于试管中。

七、四大基本反应类型:

1、化合反应:两种或两种以上的物质反应生成一种物质的反应;

2、分解反应: 一种化合物经一些特定条件产生两种或两种以上的物质;

3、复分解反应:化合物与化合物反应产生两种新的化合物的反应(注:反应物都要可溶,且生成物要是气体、沉淀或水);

4、置换反应:单质与化合物反应,生成新的单质和新的化合物的反应。

八:一些常见有颜色的物质(写化学式):

1)红色的物质:铜(Cu)、氧化铁(FeO)、红磷(P)

2)黑色的物质:碳(C)、氧化铜(CuO)、四氧化三铁(Fe3O4)、二氧化锰(MnO2)

粉末状的铁(Fe)

3)黄色的物质:硫(S)、黄铜(由铜和锌所组成的合金,无化学式,但可表达为Cu-Zn合金)。

老大,你也真很,我手都要打抽筋了,能选我吗?可以多给分吗?

太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。

一、硅太阳能电池

1.硅太阳能电池工作原理与结构

太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下:

图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。

当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:

图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。

同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。黄色的为磷原子核,红色的为多余的电子。如下图。

N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。

当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。

当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)

由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结(如图 梳状电极),以增加入射光的面积。

另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为此,科学家们给它涂上了一层反射系数非常小的保护膜(如图),将反射损失减小到5%甚至更小。一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板。

2.硅太阳能电池的生产流程

通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。

上述方法实际消耗的硅材料更多。为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。

化学气相沉积主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用 LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。

三、纳米晶化学太阳能电池

在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求。为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO2晶体化学能太阳能电池受到国内外科学家的重视。

以染料敏化纳米晶体太阳能电池(DSSCs)为例,这种电池主要包括镀有透明导电膜的玻璃基底,染料敏化的半导体材料、对电极以及电解质等几部分。

阳极:染料敏化半导体薄膜(TiO2膜)

阴极:镀铂的导电玻璃

电解质:I3-/I-

如图所示,白色小球表示TiO2,红色小球表示染料分子。染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电于最终进入导电膜,然后通过外回路产生光电流。

纳米晶TiO2太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。

四、染料敏化TiO2太阳能电池的手工制作

1.制作二氧化钛膜

(1)先把二氧化钛粉末放入研钵中与粘合剂进行研磨

(2)接着用玻璃棒缓慢地在导电玻璃上进行涂膜

(3)把二氧化钛膜放入酒精灯下烧结10~15分钟,然后冷却

2.利用天然染料为二氧化钛着色

如图所示,把新鲜的或冰冻的黑梅、山梅、石榴籽或红茶,加一汤匙的水并进行挤压,然后把二氧化钛膜放进去进行着色,大约需要5分钟,直到膜层变成深紫色,如果膜层两面着色的不均匀,可以再放进去浸泡5分钟,然后用乙醇冲洗,并用柔软的纸轻轻地擦干。

3.制作正电极

由染料着色的TiO2为电子流出的一极(即负极)。正电极可由导电玻璃的导电面(涂有导电的SnO2膜层)构成,利用一个简单的万用表就可以判断玻璃的那一面是可以导电的,利用手指也可以做出判断,导电面较为粗糙。如图所示,把非导电面标上‘+’,然后用铅笔在导电面上均匀地涂上一层石墨。

4.加入电解质

利用含碘离子的溶液作为太阳能电池的电解质,它主要用于还原和再生染料。如图所示,在二氧化钛膜表面上滴加一到两滴电解质即可。

5.组装电池

把着色后的二氧化钛膜面朝上放在桌上,在膜上面滴一到两滴含碘和碘离子的电解质,然后把正电极的导电面朝下压在二氧化钛膜上。把两片玻璃稍微错开,用两个夹子把电池夹住,两片玻璃暴露在外面的部分用以连接导线。这样,你的太阳能电池就做成了。

6.电池的测试

在室外太阳光下,检测你的太阳能电池是否可以产生电流。

科学上把单位时间里通过导体任一横截面的电量叫做电流强度,简称电流。通常用字母 I表示,它的单位是安培(安德烈·玛丽·安培,1775年—1836年,法国物理学家、化学家,在电磁作用方面的研究成就卓著,对数学和物理也有贡献。电流的国际单位安培即以其姓氏命名),简称“安”,符号 “A”,也是指电荷在导体中的定向移动。

导体中的自由电荷在电场力的作用下做有规则的定向运动就形成了 电流。

电源的电动势形成了电压,继而产生了电场力,在电场力的作用下,处于电微安(μA)1A=1 000mA=1 000 000μA,电学上规定:正电荷定向流动的方向为电流方向。金属导体中电流微观表达式I=nesv,n为单位体积内自由电子数,e为电子的电荷量,s为导体横截面积,v为电荷速度。

大自然有很多种承载电荷的载子,例如,导电体内可移动的电子、电解液内的离子、电浆内的电子和离子、强子内的夸克。这些载子的移动,形成了电流。

基本介绍中文名 :电流 外文名 :Electron flow(Current) 别称 :电流强度 表达式 :I=Q/t 提出者 :安德烈·玛丽·安培 套用学科 :物理学 单位 :安培(A) 物理量符号 :I 电流的数学定义,单位,方向,表达式,获得条件,电流、电压、电阻的规律,计算式,产生条件,标准等级,物理性质,在各种介质内的电流的物理性质,三大效应,密度,测量仪器,学生用表,钳形表,新型仪表,分类,与电阻的关系,相关物理学家,乔治·西蒙·欧姆,安德烈·玛丽·安培,对人体伤害,学习口诀,例题, 电流的数学定义 单位 国际单位制中电流的基本单位是安培。1安培由基本电荷常数e 定义,指单位时间内通过1/1.602176634×1019 个电子对应的电流。 初级学习中1安培的定义:1秒内通过导体横截面的电荷量为1库仑,即:1安培=1库仑/秒。 换算方法: 1kA=1000A 1A=1000mA 1mA=1000μA 1μA=1000nA 1nA=1000pA 一些常见的电流:电子手表1.5μA至2μA,白炽灯泡200mA,手机100mA,空调5A至10A,高压电200A,闪电20000A至200000A。 定义公式: , 在一段时间Δt内,通过导体横截面的电荷量ΔQ,单位是库仑。Δt为电荷通过导体的时间,单位是秒。 方向 物理上规定电流的方向,是正电荷定向运动的方向(即正电荷定向运动的速度的正方向或负电荷定向运动的速度的反方向)。电流运动方向与电子运动方向相反。 电荷指的是自由电荷,在金属导体中的自由电荷是自由电子,在酸,碱,盐的水溶液中是正离子和负离子。 在电源外部电流由正极流向负极。在电源内部由负极流回正极。 表达式 通过导体横截面的电荷量 Q 跟通过这些电荷量所用的时间 t 的比值称为电流,也叫电流强度。即 I=Q/t 。如果在1s内通过导体横截面的电荷量是1C,导体中的电流就是1A。 决定电流大小的微观量:在加有电压的一段粗细均匀的导体AD上选取两个截面B和C,设导体的横截面积为 S ,导体每单位体积内的自由电荷数为 n ,每个电荷的电荷量为 e ,电荷的定向移动速率为 v ,则在时间 t 内处于相距为 vt 的两截面B、C间的所有自由电荷将通过截面C。由 (I=ΔQ/Δt)可得 I = nesv。 其中: n :表示单位体积内的自由电荷数; e:自由电荷的电量; s:为导体横截面积; v:为自由电荷定向移动的速率。 获得条件 电路中保持有恒定的电动势(电力场)。 电流表 电路连线好,闭合开关,处处相通的电路叫做通路(也称为闭合电路)。 电流、电压、电阻的规律 串联电路(n个用电器串联): 电流:I总=I1=I2....=In (串联电路中,电路各部分的电流相等) 电压:U总=U1+U2....+Un (总电压等于各部分电压之和) 电阻:R总=R1+R2....+Rn(总电阻等于各部分电阻之和) 并联电路(n个用电器并联): 电流:I总=I1+I2....+In(并联电路中,干路电流等于各支路电流之和) 电压:U总=U1=U2....=Un(各支路两端电压相等并等于电源电压) 电阻:1/R总=1/R1+1/R2....+1/Rn(总电阻倒数等于各部分电阻倒数之和)。当2个用电器并联时,有以下推导公式:R总=R1R1/(R1+R2) 电阻公式推导方法: (1)串联:由U总=U1+U2....+Un,得到I总R总=I1R1+I2R2....+InRn 因为串联电路各部分电流相等,即I总=I1=I2....=In,所以得到: R总=R1+R2....+Rn(例如一个3Ω的电阻和一个6Ω的电阻串联,其串联的总电阻为9Ω) (2)并联:由I总=I1+I2....+In,得到U总/R总=U1/R1+U2/R2....+Un/Rn 因为并联电路各部分电压等于总电压,即U总=U1=U2....=Un,所以得到: 1/R总=1/R1+1/R2....+1/Rn(例如一个3Ω的电阻和一个6Ω的电阻并联,其并联的总电阻为2Ω) 对于只有两个电阻并联的部分来说,可以继续推导出以下公式: 由1/R总=1/R1+1/R2....+1/Rn可知:1/R总=1/R1+1/R2=R2/R1R2+R1/R1R2=(R1+R2)/R1R2 所以R总=R1R1/(R1+R2) 由上面的公式还可以得到一个结论:串联的总电阻大于其任意一分电阻,并联的总电阻小于其任意一分电阻。 计算式 电流的方向与正电荷在电路中移动的方向相同。实际上并不是正电荷移动,而是负电荷移动。 电子流 是电子(负电荷)在电路中的移动,其方向为电流的反向。电流强度可以用公式表达为: 其中,Q为电量(单位是库仑),t为时间(单位是秒)。 (1A=1C/s) (部分电路欧姆定律)或I=E(电动势)/(R[外]+r[内]) 或I=E/(R+Rg[检测器电阻]+r)(闭合电路欧姆定律) 在 中如果正负离子同时移动形成电流,那么Q为两种电荷的电量和。 产生条件 1、有电场。(电路当中,电源会产生电场。)

2、有自由移动的带电粒子。(电路中,还需要是闭合电路。) 标准等级 GB/T762-2002 单位A(安培)

1、1.25、1.6、2、2.5、3.15、4、5、6.3、8、10、12.5、16、20、25、31.5、40、50、63、80、100、125、160、200、250、315、400、500、630、800、1000、1250、1600、2000、2500、3150、4000、5000、6300、8000、10000、12500、16000、20000、25000、31500、40000、50000、63000、80000、100000、125000、160000、200000 物理性质 在各种介质内的电流的物理性质 金属在固态金属导体内,有很多可移动的自由电子。虽然这些电子并不束缚于任何特定原子,但都束缚于金属的晶格内。甚至于在没有外电场作用下,因为热能(thermal energy) ,这些电子仍旧会随机地移动。但是,在导体内,平均净电流是零。挑选导线内部任意截面,在任意时间间隔内,从截面一边移到另一边的电子数目,等于反方向移过截面的数目。如同乔治·伽莫夫在他发表于 1947 年的科学畅销书《One, Two,Three…Infinity》谈到: “金属物质与其它物质不同的地方,在于其最外层的电子很松弛地束缚于原子,电子能够很容易地逃离原子。因此,满布于金属的内部,有很多未被束缚的电子,毫无目标地游动,就好像一群无家可归的醉汉。当施加电压于一根金属导线的两端,这些自由电子会朝着电势高的一端奔去,这样,形成了电流。” 其它介质在固态金属内,电荷流动的载子是电子,从低电势流到高电势。在其它种介质内,任何电荷载子的 载子流 都可以形成电流。在真空内,可以制作一个离子束(ion beam) 或电子束。这也是一种电流。在有些传导性物质内,电流是由正电荷载子和负电荷载子共同形成的。在像质子导体(proton conductor) 一类的物质内,电流可能完全是由正电荷载子形成。例如,在水溶液内,电解质会导电,电流内的正价氢离子(质子)朝着某方向流动,负价的硫酸根离子朝着反方向流动。在电花(spark) 或电浆内的电流内有电子、正离子、负离子。在半导体内,可以视电流为正值空穴(一个呈电中性的原子,由于少了一个负电的电子,所以那里就会呈现出一个正电性的空位)的流动。这种半导体称为 p型半导体 。 三大效应 热效应 导体通电时会发热,把这种现象叫做电流热效应。例如:比较熟悉的焦耳定律:是定量说明传导电流将电能转换为热能的定律。(焦耳定律) 磁效应 电流的磁效应(动电会产生磁):奥斯特发现:任何通有电流的导线,都可以在其周围产生磁场的现象,称为电流的磁效应。(毕奥-萨法尔定律) 化学效应 电的化学效应主要是电流中的带电粒子(电子或离子)参与而使得物质发生了化学变化。化学中的电解水或电镀等都是电流的化学效应。(法拉第电解定律) 密度 电流密度是一种度量,以矢量的形式定义,其方向是电流的方向,其大小是单位截面面积的电流。采用国际单位制,电流密度的单位是“安培/平方毫米”。用方程表达J=I/s 其中( I )是电流,( J )是电流密度,( s )是截面矢量。 测量仪器 学生用表 电流表的符号:- A - 电流表的使用方法:电流表要与被测用电器串联。正负接线柱的接法要正确:使电流从正接线柱流入,从负接线柱流出,俗称正进负出。被测电流不要超过电流表的量程。(否则会烧坏电流表)可用试触的方法确定量程。因为电流表内阻太小(相当于导线),所以绝对不允许不经过用电器而把电流表直接连到电源的两极上。确认使用的电流表的量程。确认每个大格和每个小格所代表的电流值。钳形表 钳形电流表(简称钳表),是集电流互感器与电流表于一身的仪表,其工作原理与电流互感器测电流是一样的。钳形表是 由电流互感器和电流表组合而成。电流互感器的铁心在捏紧扳手时可以张开,被测电流所通过的导线可以不必切断就可穿过铁心张开的缺口,当放开扳手后铁心闭合。穿过铁心的被测电路导线就成为电流互感器的一次线圈,其中通过电流便在二次线圈中感应出电流。从而使二次线圈相连线的电流表便有指示——测出被测线路的电流。 钳形电流表分高、低压两种,用于在不拆断线路的情况下直接测量线路中的电流。 新型仪表 各类变频电量分析仪、高精度功率分析仪、宽频功率分析仪等高端仪器,可以测量任意波形的电压、电流、功率和谐波。 分类 电流分为交流电流和直流电流。 交流电:大小和方向都发生周期性变化。生活中插墙式电器使用的是民用交流电源。 直流电:方向不随时间发生改变。生活中使用的可移动外置式电源提供的的是直流电。 交流电在家庭生活、工业生产中有着广泛的使用,生活民用电压220V、通用工业电压380V,都属于危险电压。 直流电一般被广泛使用于手电筒(干电池)、手机(锂电池)等各类生活小电器等。干电池(1.5V)、锂电池、蓄电池等被称之为直流电源。因为这些电源电压都不会超过24V,所以属于安全电源。 与电阻的关系 摺叠欧姆定律 很早以前,人们就有有关电流、电压关系的猜想(当时没有电阻这一概念),但由于那时候没有能提供稳定电压的电源,所以这些猜想知道很久以后才被人类系统地总结出来。世界上第一个系统研究电流、电压与电阻关系的人是欧姆(1789~1854)。在大量实验的基础上,欧姆总结出了它们三者的关系:电压一定时,电流与电阻成反比;电阻一定时,电流与电压成正比,用公式表示就是:I=U/R。 除此之外,欧姆还在他其它的著作中说明了影响电阻的因素,其公式可以表达为R=ρL/S(ρ为导体电阻率,L为导体长度,S为导体横截面积)。 相关物理学家 乔治·西蒙·欧姆 乔治·西蒙·欧姆(1789~1854),德国物理学家,生于巴伐利亚埃尔兰根城。欧姆的父亲是一个技术熟练的锁匠,对哲学和数学都十分爱好。欧姆从小就在父亲的教育下学习数学并受到有关机械技能的训练,这对他后来进行研究工作特别是自制仪器有很大的帮助。欧姆的研究,主要是在1817~1827年担任中学物理教师期间进行的。他的研究工作是在十分困难的条件下进行的。他不仅要忙于教学工作,而且图书资料和仪器都很缺乏,所以他只能利用业余时间,自己动手设计和制造仪器来进行有关的实验。1826年,欧姆发现了电学上的一个重要定律——欧姆定律,这是他最大的贡献。这个定律在我们今天看来很简单,然而它的发现过程却并非如一般人想像的那么简单。欧姆为此付出了十分艰巨的劳动。在那个年代,人们对电流强度、电压、电阻等概念都还不大清楚,特别是电阻的概念还没有,当然也就根本谈不上对它们进行精确测量了;况且欧姆本人在他的研究过程中,也几乎没有机会跟他那个时代的物理学家进行接触,他的这一发现是独立进行的。欧姆独创地运用库仑的方法制造了电流扭力秤,用来测量电流强度,引入和定义了电动势、电流强度和电阻的精确概念。 欧姆 欧姆发现了电阻中电流与电压的正比关系,即著名的欧姆定律;欧姆他还证明了导体的电阻与其长度成正比,与其横截面积和传导系数成反比,以及在稳定电流的情况下,电荷不仅在导体的表面上,而且在导体的整个截面上运动。为纪念欧姆在电学上的重要贡献,国际物理协会将电学中电阻的单位命名为欧姆,用希腊字母欧米伽(Ω)来作为电阻的符号,欧姆的名字也被用于其他物理及相关技术内容中,比如“欧姆接触”“欧姆杀菌”,“欧姆表”等。 安德烈·玛丽·安培 安德烈·玛丽·安培 (André-Marie Ampère 1775~1836年),法国物理学家,对数学和化学也有贡献。1775年1月22日生于里昂一个富商家庭。年少时就显出数学才能。 科学成就:1.安培最主要的成就是1820~1827年对电磁作用的研究。 安培画像 ①发现了安培定则 奥斯特发现电流磁效应的实验,引起了安培注意,使他长期信奉库仑关于电、磁没有关系的信条受到极大震动,他全部精力集中研究,两周后就提出了磁针转动方向和电流方向的关系及从右手定则的报告,以后这个定则被命名为安培定则。 ②发现电流的相互作用规律 接着他又提出了电流方向相同的两条平行载流导线互相吸引,电流方向相反的两条平行载流导线互相排斥。对两个线圈之间的吸引和排斥也作了讨论。 ③发明了电流计 安培还发现,电流线上圈中流动的时候表现出来的磁性和磁铁相似,创制出第一个螺线管,在这个基础上发明了探测和量度电流的电流计。 ④提出分子电流的假说 他根据磁是由运动的电荷产生的这一观点来说明地磁的成因和物质的磁性。提出了著名的分子电流假说。安培认为构成磁体的分子内部存在一种环形电流——分子电流。由于分子电流的存在,每个磁分子成为小磁体,两侧相当于两个磁极。通常情况下磁体分子的分子电流取向是杂乱无章的,它们产生的磁场互相抵消,对外不显磁性。当外界磁场作用后,分子电流的取向大致相同,分子间相邻的电流作用抵消,而表面部分未抵消,它们的效果显示出巨观磁性。安培的分子电流假说在当时物质结构的知识甚少的情况下无法证实,它带有相当大的臆测成分;在今天已经了解到物质由分子组成,而分子由原子组成,原子中有绕核运动的电子,安培的分子电流假说有了实在的内容,已成为认识物质磁性的重要依据。 ⑤总结了电流元之间的作用规律——安培定律 安培做了关于电流相互作用的四个精巧的实验,并运用高度的数学技巧总结出电流元之间作用力的定律,描述两电流元之间的相互作用同两电流元的大小、间距以及相对取向之间的关系。后来人们把这定律称为安培定律。安培第一个把研究动电的理论称为“电动力学”,1827年安培将他的电磁现象的研究综合在《电动力学现象的数学理论》一书中。这是电磁学史上一部重要的经典论著。为了纪念他在电磁学上的杰出贡献,电流的单位“安培”以他的姓氏命名。 他在数学和化学方面也有不少贡献。他曾研究过机率论和积分偏微方程;他几乎与H戴维同时认识元素氯和碘,导出过阿伏伽德罗定律,论证过恒温 *** 积和压强之间的关系(玻意耳定律),还试图寻找各种元素的分类和排列顺序关系。 2.“电学中的牛顿” 安培将他的研究综合在《电动力学现象的数学理论》一书中,成为电磁学史上一部重要的经典论著。麦克斯韦称赞安培的工作是“科学上最光辉的成就之一,还把安培誉为“电学中的牛顿”。 安培还是发展测电技术的第一人,他用自动转动的磁针制成测量电流的仪器,以后经过改进称电流计。 安培在他的一生中,只有很短的时期从事物理工作,可是他却能以独特的、透彻的分析,论述带电导线的磁效应,因此我们称他是电动力学的先创者,他是当之无愧的。 对人体伤害 造成触电伤亡的主要因素一般有以下几方面: 1.通过人体电流的大小。根据电击事故分析得出:当工频电流为0.5~1mA时,人就有手指、手腕麻或痛的感觉;当电流增至8~10mA时,针刺感、疼痛感增强发生痉挛而抓紧带电体,但终能摆脱带电体;当接触电流达到20~30mA时,会使人迅速麻痹不能摆脱带电体,而且血压升高,呼吸困难;电流为50mA时,就会使人呼吸麻痹,心脏开始颤动,数秒钟后就可致命。通过人体电流越大,人体生理反应越强烈,病理状态越严重,致命的时间就越短。 2.通电时间的长短。电流通过人体的时间越长后果越严重。这是因为时间越长,人体的电阻就会降低,电流就会增大。同时,人的心脏每收缩、扩张一次,中间有0.1s的时间间隙期。在这个间隙期内,人体对电流作用最敏感。所以,触电时间越长,与这个间隙期重合的次数就越多,从而造成的危险也就越大。 3.电流通过人体的途径。当电流通过人体的内部重要器官时,后果就严重。例如通过头部,会破坏脑神经,使人死亡。通过脊髓,会破坏中枢神经,使人瘫痪。通过肺部会使人呼吸困难。通过心脏,会引起心脏颤动或停止跳动而死亡。这几种伤害中,以心脏伤害最为严重。根据事故统计得出:通过人体途径最危险的是从手到脚,其次是从手到手,危险最小的是从脚到脚,但可能导致二次事故的发生。 4.电流的种类。电流可分为直流电、交流电。交流电可分为工频电和高频电。这些电流对人体都有伤害,但伤害程度不同。人体忍受直流电、高频电的能力比工频电强。所以,工频电对人体的危害最大。 5.触电者的健康状况。电击的后果与触电者的健康状况有关。根据资料统计,肌肉发达者、成年人比儿童摆脱电流的能力强,男性比女性摆脱电流的能力强。电击对患有心脏病、肺病、内分泌失调及精神病等患者最危险。他们的触电死亡率最高。另外,对触电有心理准备的,触电伤害轻。 学习口诀 电荷 摩擦起电分电荷,电荷电性分两种。 毛皮橡胶橡带负,丝绸玻璃玻带正。 同种电荷相排斥,异种电荷相吸引。 看到排斥的现象,电荷电性肯定同。 元电荷:带的电荷1.6,乘以10的-19方。 电流方向 形成电流有规定,电荷定向之移动。 正电移动的方向,规定电流的方向。 金属导电靠(自由)电子,电子方向电流反。 串联和并联 串联电路 首尾相连为串联,串联电路一条路。 一个开关控全部,位置不同控相同。 所有电器互(相)影响,一个停止都停止。 并联电路 头头连,尾尾连,并列两点为并联。 电器独立能工作,互不影响是特点。 并联电路几条路,总关控全支控支。 根据实物图画电路图 寻找接线多线柱,串并关系要分清。 一画支路二并联,再画干路和电源。 元件符号要标清,画完对应要检查。 根据电路图连线实物图 按图连线要注意,一连支路二并联。 三连干路和电源,四再添加电压表。 【设计电路】 设计先画电路图,开关位置是关键。 开关控谁跟谁串,通常闭合电灯亮。 所有电器都控制,开关一定在干路。 任一开关闭合后,铃响铃定在干路。 电流的强弱 电流表 电流表,测电流,测谁电流跟谁串。 “+”进“-”出右偏转,左转线柱定接反。 禁止直接连电源,短路烧毁电流表。 读数首先看量程,再看最小刻度值。 量程选用0.6A,0.02A一小格。 量程选用3安培,一小格为0.1A. 探究串、并联电路电流规律 串联电流之关系,各处电流都相等,I=I1=I2. 并联电流之特点,总流等于支流和,I=I1+I2. 例题 例一 .电流表的表盘如图所示。 (1)若使用0.6A的量程,则电流表示数是多少? (2)若使用3A的量程,则电流表示数是多少? (3)若用此表测量约为0.3A的电流强度,应将表的哪两个接线柱接入? 解答: (1)若用0.6A量程,最小刻度为0.02A,指针所指为0.49A。 (2)若用3A量程,最小刻度为0.1A,指针所指为2.45A。 (3)0.3A的电流强度,既未超过3A量程,也未超过0.6A量程,同时考虑准确度,应选用0.6A量程,即将电流表的“-”和“0.6”两接线柱接入待测电路。 思维方式:根据量程明确准确后再行读数。 例二 .某同学连线一个实验电路如图所示。 (1)图中电流表的连线有什么错误。 (2)若要测量通过灯泡L2的电流,只允许变动图中某一根导线中的一个端点的接线位置,应如何变动? (3)在(2)中已作变动的基础上,如果要测量通过电源的电流,也只允许变动一根导线上的一个端点的接线位置,应如何变动? 解答: (1)从图中可以看出,电流表与灯泡L1串联,即测量通过L1的电流强度,但电流表的+、-接线柱接反了。 (2)要测通过L2的电流,应将电流表与L2串联,应将导线a原接电流表“+”接线柱一端改接到“-”接线柱。 (3)要测通过电源的电流,即测通过L1和L2的总电流,应将电流表与电源串联,可将导线c原接电流表“-”接线柱的一端改接到“+”接线柱上。 思维方式:根据电流表测电流的使用规则分析。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8514607.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存