Ion Torrent 基因分析仪——介绍及原理

Ion Torrent 基因分析仪——介绍及原理,第1张

IonTorrent基因分析仪组件:

IonTorrent与Illumina原理的主要区别:

Illumina:荧光信号

Ion Torrent:电信号

IonTorrent 核心理念:

核心理念:芯片就是测序仪

特点:扩展性、简捷、快速

半导体测序技术:

IonTorrent生物化学原理:

IonTorrent如何快速、直接检测:

Ion系列测序平台适用的chips及数据产出情况汇总:

PGM Chip:

314 Chip:1.2M Wells

316 Chip:6.1M Wells

318 Chip:11M Wells

Ion torrent测序过程:

Follow 和Cycle的含义:

一个“Follow”:将一个特定的dNTP(T, A, C, or G)打入芯片,随后进行洗脱;

一个“Cycle”:是由4个dNTP组成,例如:A-T-C-G= 1 Cycle。

测序时“Follow”的顺序是怎样的?

“Flow”的顺序是以下dNTP顺序的重复(参数可调):

“TACG-TACG-TCTG-AGCA-TCGA-TCGA-TGTA-CAGC”

IonTorrent 测序记录“Ionograms”:

An “ionogram”代表信号的输出

必须“从上到下”和“从左向右”读

柱的高度代表在一个“Flow”中有几个核酸结合上去

“Negative ” 或 “zero” flows 代表没有核酸结合上去

IonTorrent实验流程汇总:

IonTorrent特点:

1.扩展性   :灵活高效的Ion Torrent

2.简捷:简单而又真实的生物化学原理

3.快速:最快速的 *** 作流程

IonTorrent应用与产品化:

提供快速鉴别与筛查食源性致病菌的整套工具

微生物全基因组测序— de novo 测序和重测序;

宏基因组测序(16S/18S…)—一项有效的工具;

RNA病毒测序:

1.纯化的RNA病毒分型

–病毒RNA抽提

–长PCR扩增子

–短PCR扩增子(利用AmpliSeq技术)

–TargetSeq捕获

2.未知的RNA病毒 denovo分析

–病毒RNA抽提

–反向富集,去除rRNA专有引物设计,去除宿主rRNA

Ion Total RNA-SeqKit (48 reactions)

•构建全外显子或Small RNA文库;

•维持原始单链并减少偏向性和错误;

•低起始量建库:总RNA 200ng或5ngmiRNA。

目标区域:

1.扩增子测序

基于PCR目标序列的深度测序,用于检测变异}扩增子的长度是可变的,

Ion Xpress™ 文库制备试剂盒与现有的Sanger测序法的引物完全兼容

利用barcoding试剂盒(条码试剂盒),可以实现多种样品的扩增子同时测序

检测生殖细胞和体细胞的突变

2.捕获目标序列 (目标序列>100kb)

通过杂交法或大量并行的PCR,实现目标序列的富集

•TargetSeq™定制富集试剂盒,可根据客户应用需求实现特定序列的富集

•可与其他富集方法兼容

Ion DNA 条码接头(Barcode Adaptor )1-96试剂盒

1.Ion半导体测序技术采用优化的barcodes可以 一次进行多达96种文库的同时测序。

2.支持多种文库的目标序列或全基因组的再测序,可以降低成本,节省样品。

3. 最少的接头序列和强大的校正功能确保样品种类的确认

4. 兼容自动化 *** 作

微生物测序

准确,快速的细菌和病毒的从头测序和重测序

线粒体测序

多重线粒体测序用于科研,临床和法医等应用

扩增子测序

•多重扩增子测序用于快速的检测生殖细胞和体细胞的突变

•与毛细管电泳测序的引物完全兼容

•利用测序进行基因分型

•细菌和病毒的分型质粒测序

大片段目标序列(>100kb)的在测序

快速,简单的 *** 作流程适用于所有的大片段目标序列的富集方法

验证全基因组和显子组的突变

正交技术验证SOLiD®System/Illumina的全基因组和外显子组的测序结果

文库评估

在进行高通量的测序之前,对构建的文库进行快速的复杂性验证或QC质控

RNA测序

快速,简单的RNA测序解决方案(最初主要针对于小RNA&低复杂度的转录组)

IonTorrent数据处理:

Ion Torrent下机数据格式(SFF、BAM、Fastq)

默认下机文件类型为:BAM;

通过插件FastqCreator可下机直接生成:Fastq;

原始下机数据路径:

Fastq格式文件:/results/analysis/output/Home/(ReportName)/plugin_out/FileExporter_out.*

BAM格式文件:/results/analysis/output/Home/(ReportName)

IonTorrent测序质控:

Positive-controlKit,上机制备模板时加入;

可自行设置,占据上样量;

IonTorrent上机情况反馈

机器运行及分析的日志文件压缩包(Support文件)。

第二代测序技术又称为下一代测序(NGS),与第一代相比主要是1.高通量测序2.边合成边测序。

回顾二代测序的发展史

1996年Ronaghi和Uhlen发明了焦磷酸测序,454 Life sciences 公司基于此原理推出了测序系统Genome Sequencer 20System,标志着二代测序的商用;

2006和07年 Solexa和ABI公司推出了GA SOLID测序平台

2010年Life Technologies 推出Ion PGM系统

2014年华大推出了BGISEQ-1000

1.Illumina/Solexa测序平台

之前也总结过Illumina测序的原理,现简要梗概一下其步骤

1)DNA文库准备:先将DNA链打断成200-500bp的片段,末端修复后在两端连上特异性的接头

2)流动槽杂交:

带有接头的DNA片段流过流通池,与其上固定的种接头通过互补配对结合。这些固定的接头其后充当引物的作用,在聚合酶的作用下进行合成反应。

3)DNA合成后,变性使得未与流动池共价连接的DNA链解离并洗掉,反向练则以共价键结合在流动池的表面。因为DNA单链另一端也含有接头,能够和临近的接头互补,DNA链形成桥式结构,同样的这个相邻的接头充当引物,在DNA聚合酶的作用下, 合成双链桥式结构。重复此过程,形成5000-10000个copy。这个目的是形成序列相同的DNA簇,使得在测序的过程中产生足够强的信号。变性打开,各自形成单链的DNA链固定在表面。将反向链切除,将正向链的的3‘封闭,以免产生不必要的DNA延伸。

4)DNA测序:加入测序引物,DNA聚合酶,4种带不同荧光标记的dNTP,且这些dNTPde3’端羟基被封闭,无法继续下一个反应。计算机检测到荧光的信号后,将不同的信号转化为对应的碱基。加入化学试剂淬灭信号,并去除3’的保护基团,并进行下一个碱基的反应。

illumina测序一般能够检测150个碱基左右,因为在后续,由于DNA合成酶活力下降等原因,造成相同序列的DNA信号不一致,DNA测序的准确性下降。

在实际的测序过程中,通常一次性会测不同物种来源的DNA,此时,需要barcode来进行标记。不同的物种带有不同的barcode序列,在DNA测序完成后,需要加入barcode引物,将barcode也进行测序。

该测序系统基半导体测序原理,不需要进行光学感应。

原理简要概括如下:

在测序的过程中,识别不同的碱基不是依靠荧光信号,而是通过dNTP结合释放的H+。

更多的信息详见 7种测序平台 - Thinkando - 博客园 (cnblogs.com)

补充:

罗氏454测序

罗氏454的焦磷酸测序是最早发行的二代测序。其测序的文库的建立和Ion Torrent相似,一个磁珠吸附一个模板DNA,充当一个微型的反应器。外面裹以油,将不同的液滴隔离开来。不同的片段平行扩增,待反应结束后,破坏乳液,只剩下磁珠。此时一个磁珠=一条读长。

将磁珠放在PTP板中测序,依次加入ATCG四种碱基。让碱基能够成功配对时,会释放一个焦磷酸。

从本次课到第8次课,均是讲述DNA相关的知识。核酸的结构开始,到DNA如何组装为染色体,基因组学(5-6),DNA复制(7-8)。 学习该部分,希望同学们掌握描述DNA或是RNA时,常用的理化参数或者名词有哪些;还有就是关于核酸的常识。 当我们谈到核酸时,一般会关注GC含量、Tm值、大小(长度)。1). GC含量。 一个核酸分子中,鸟嘌呤和胞嘧啶所占的比率称为GC含量。在DNA中,GC含量愈高,DNA的密度也愈高;形成的双链愈稳定,因此热及碱不易使之变性。根据这一特性,可进行DNA的分离或测定。此外,对生物的基因组DNA来说,GC含量是一个固定值。2). Tm值。与此相关的是核酸的变性和复性。DNA在物理或化学因素作用下(如加热、酸碱或紫外线照射),可以导致两条DNA链之间的氢键断裂,而核酸分子中的所有共价键(如磷酸二酯键、糖苷键等)则不受影响,称为DNA变性 (DNA denaturation or DNA melting)。凡能破坏双螺旋稳定的因素(如加热、极端的pH、有机试剂如甲醇、乙醇、尿素及甲酰胺等)均可引起核酸分子变性。比如,PCR中,会使用90度以上的高温让DNA变性;分析RNA时,会用65度进行RNA的变性;Southern blotting中,会用0.4N的NaOH对凝胶中电泳分离的DNA进行变性。 Tm值,就是让一半的DNA分子发生变性时的温度。DNA的Tm值由以下几个因素决定:(1)GC含量,在一定条件下Tm高低与DNA分子中的GC含量成正比,G-C含量高时,Tm值比较高,反之则低。这是因为G-C之间的氢键较A-T多,解链时需要较多的能量之故。(2)DNA长度。DNA所处的溶液条件,影响因素包括离子浓度、pH值和有机溶剂。 DNA复性。复性(renaturation),也称退火(annealing),就是两条单链DNA分子之间依据Waston-crick碱基互补配对的规则,变成双链的过程。复性的最佳温度一般在比Tm低25度左右。此外,如果将DNA高温变性后,立刻放在冰上降温,DNA会保持变性的单链状态,(称为淬火,quelling)。同DNA变性一样,影响DNA复性的因素包括:DNA浓度、复性的时间、DNA序列的复杂度等。鉴于DNA的复性的时间与DNA复杂度有关,因此可以通过用C0t值来描述DNA序列的复杂度。序列复杂度低,重复序列多,复性就快,C0t值低;复杂度高,复性慢,C0t就高。 DNA的变性和复性是许多实验的基础,比如PCR和分子杂交实验。例如我们在PCR中遇到高GC含量的模板时,DNA变性可能不完全,会利用一些添加剂来降低Tm值,提高PCR效率。这次课的作业就是与此有关。 另外就是经典的分子杂交实验。分子杂交:指两条单链核酸分子间复性变为为双链的过程。分子杂交技术,利用DNA变性、复性来检测核酸的技术。分子杂交可以发生在DNA单链之间,也可以是DNA单链和RNA之间,或者RNA之间都可以进行分子杂交。2)复性的两个DNA或RNA单链之间,序列可以不完全一致。比如DNA引物与模板之间有一个错配,实际上也能结合为部分双链(如DNA二级结构中的R型环突,R-loop)。3). DNA大小 。 核酸的大小主要用碱基对(base pair,bp)来表示。常用的单位有Kb (kilo base pairs),Mb (mega base pairs),Gb (giga base pairs) 等。在这部分中,需要了解C-值悖论。不同生物,基因组DNA的大小差异非常大,从只有几千bp的病毒到十亿以上碱基对的植物、动物。一般将单倍体基因组总DNA的含量可作为一个物种的特征,称为C值。按照常理推断,DNA的碱基多,携带的信息就多,基因的数目就多,能够完成的生命活动也会更复杂。在低等生物中的确存在这样的规律,一个物种的DNA多,往往编码的基因就多,能够适应更复杂的自然环境。但在真核生物中,DNA含量的和它编码基因的数目是没有严格的关联,和生物进化的复杂性也没有严格的对应关系。比如,青蛙的基因组是人的7倍;在植物种,拟南芥基因组只有100多Mb,水稻是400Mb左右,玉米和小麦是Gb以上,但这几种植物的复杂性、进化的程度,其实是等同的。这就引出了C值悖论(C-value paradox),即一个物种的C-值与它的进化没有严格的对应关系。 要完整的回答C-value paradox,可能等大家学完基因组学以及后面的课程,才能系统地解释出现C-值悖论地原因。简单的说,C-值大地物种中可能有大量的非编码DNA,还有就是大量的重复序列(如转座子),因此C值虽大,但并没有包含更多地基因(或是编码更多的蛋白)。那是不是这些非编码DNA和重复区域就是不需要的,是基因组上的“垃圾DNA”,这个问题不容易回答。我们在研究中确实发现有些DNA区域,或者一些有些不表达的重复基因,去掉以后对植物没什么影响。但大家回忆一下第一次课的小幽默。遗传学家将“安全带”去掉,正常情况对汽车的行驶不会由任何影响,只有在撞车时才会发现它是必要的。我们现在将某个基因或某段DNA去掉,并不能完全确定对植物没有影响,也许是在特定条件下才会出现;当然,有一些DNA的确就是“进化”的遗迹,是可以抛弃的。 DNA的一级结构是指各个核苷酸结构单元或碱基的排列顺序,存储了生物的遗传信息。此部分的重点是学习DNA测序的原理。1)Sanger测序最经典的是Sanger测序,也称链终止测序(chain termination method)。它利用DNA合成反应过程中,双脱氧核苷酸的加入使DNA链的合成终止,将终止的DNA链电泳后,来读取DNA序列。我们一般使用的是自动化sanger测序仪,用四种不同的荧光分子,分别标记ddATP、ddCTP,ddTTP和ddGTP。测序反应后,利用激光扫描仪直接读取荧光分子的颜色,获得碱基信息。(视频: https://v.youku.com/v_show/id_XMjk5ODA3ODc2MA==.html?spm=a2h0k.11417342.soresults.dtitle)2). 二代测序方法即使自动化的Sanger测序,在前期需要大量的准备工作,并且测序通量有限,一次电泳也只能进行384个片段的测序反应。2005 年 Roche 公司发布的 454 测序系统标志着测序技术跨人高通量并行测序的时代。第二代 DNA 测序(next generation sequencing,NGS)技术又称大量并行测序技术(massive parallel sequencing,MPS)、高通量测序技术(high—throughputsequencing,HTS)。 NGS其特点是一个反应能同时测定成千上万的DNA片段的序列,但读取序列的长度有限。最早只能读取几十个碱基对长度的小片段,到现在能够并行读取300-500bp的DNA片段的序列 。对于不同的测序技术,需要同学可以去查阅资料,到各个测序公司的官网了解这些测序方法的原理和性能。这里这是点到为止。焦磷酸测序(pyrosequencing),  454测序仪 。 加入某一核苷酸时,检测DNA合成时是否产生PPi(焦磷酸)来判断碱基序列。 Illumina/Solexa测序:荧光标记和分子阵列。即在一张芯片上同时进行大量的类似Sanger的测序反应。由于使用的末端终止世纪时可逆的,在完成一个碱基的读取后,可持续进行DNA链的延伸和测序。 Ion Torrent测序(半导体测序):利用半导体芯片捕获DNA合成过程中产生pH值的变化。3). 三代测序即单分子测序技术,在测序过程中不需要涉及PCR扩增,实现了对每一条DNA分子的单独测序。三代测序技术具有超长读长,还拥有不需要模板扩增、运行时间较短、直接检测表观修饰位点、较高的随机测序错误等特点。它弥补了第二代测序读长短、受GC含量影响大等局限性,已在小型基因组从头测序和组装中有较多应用。包括以下几个公司的技术。 Helicos (最早,2012年破产) OxfordNanopore 纳米孔测序(Nanopore) Pacific Biosciences的SMART测序,PacBio测序 DNA的二级结构主要是各种形式的双螺旋,除了最常见的B-型双螺旋,此外还有A-型双螺旋、Z-型双螺旋。B-型双螺旋也就是Watson和Crick提出的DNA结构模型,是生物体内DNA的主要形态。DNA还存在三链螺旋和四链螺旋。由于DNA的特殊性质,DNA可以组装成各种二级结构的纳米材料(DNA Origami)。我们感兴趣是有生物学意义的核酸结构。 在DNA复制, 转录,重组等阶段,双螺旋DNA还能形成多样的二级结构,比如分支型的DNA(在DNA修复中会出现),DNA复制时形成Y性的复制叉等 部分特殊的DNA序列哈能形成三螺旋DNA和四股螺旋DNA。三股螺旋DNA 四螺旋DNA ,也称G-quadruplex,在GGG重复序列组成的DNA链中容易形成的四螺旋DNA,发现于端粒、启动子等区域。近年研究发现G-quadruplex可能具有非常广泛的生物学功能,参与转录、翻译等环节的调控。         在细菌、病毒、真核细胞线粒体、叶绿体中,DNA多呈现双链环状分子,是没有自由末端的闭合双链结构(covalently closed circle DNA, cccDNA)。DNA分子可以在双螺旋的基础上,进一步绕同一中心轴扭转,造成额外的螺旋。形成超螺旋的结构。超螺旋本身具有方向性,因此当旋转方向不同时,可产生正超螺旋和负超螺旋两种形式的拓扑结构。右手超螺旋(顺时针),称为负超螺旋(与DNA双螺旋的旋转方向相反的扭转);反之形成的左手超螺旋(逆时针)称为正超螺旋(与DNA双螺旋的旋转方向相同的扭转)。在生物体内,DNA主要以负超螺旋的形式存在,并通过拓扑异构酶来调整DNA的超螺旋结构。DNA超螺旋与DNA复制和转录都有关(可见DNA复制部分)。 真核生物染色体虽然是线性分子,但其DNA与蛋白质相互结合,以许多大环的形式存在,许多个环的基部聚合在一起形成类似环的结构。此外,真核生物DNA在细胞中高度压缩成染色体结构,在后面的章节中会介绍。3.5 RNA的二级结构RNA为单链,非常容易分子内或是分子间形成双链,进而形成各类二级结构。RNA的二级结构跟它的功能有密切联系,比如核糖体RNA、snoRNA、tRNA的二级结构,siRNA来源于双链RNA,miRNA来源于同一个RNA分子形成的stem-loop结构等。这节的另外一部分内容就是希望大家熟悉各类RNA相关的名词。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8561900.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存