激光技术基础知识

激光技术基础知识,第1张

激光

英文名 LASER,其全称是Light Amplification by Stimulated Emission of Radiation。

字面意思就是“光受激辐射放大”。

其为人工光源,具有与自然光不同的特性,可直线传播到很远,并且可聚集在较小范围等。

自然光包含从紫外线到红外线等多种波长的光。其波长不一。

自然光

激光为单一波长的光,其特性称之为单色性。单色性的优点在于可提高光学设计的灵活性。

激光

光的折射率因波长不同而产生变化。

自然光穿过镜头时,会因内含不同种类的波长,而产生扩散现象。这种现象称为色差。

而激光为单一波长的光,只会朝相同的方向折射。

例如,摄像头的镜头需要具备可校正因颜色导致的失真的设计,但激光仅需考虑该波长即可,因此光束可长距离传送,实现小光斑聚光的精密设计。

指向性是指声音或光线在空间内前进时不易扩散的程度,指向性较高则表示扩散小。

自然光包含朝各种方向扩散的光,为提高指向性,需要靠复杂的光学系统去除前进方向以外的光。

自然光

激光为指向性较高的光,让激光不扩散而直线前进,在光学设计上较为容易,可进行长距离传送等。

激光

相干性表示容易相互干扰的程度。如果将光考虑为波,波段越相近则相干性越高。

例如,水面上不同的波相互碰撞时,可能相互增强或相互抵消,与这一现象相同,越随机的波干扰程度越弱。

自然光

激光地位相、波长、方向一致,可维持较强的波,从而实现长距离传送。

激光波峰波谷一致

相干性较高的光,具有可长距离传送且不会扩散的特性,具备可通过镜头聚集成小光斑的优点,可将产生的光传送至别处,用作高密度光。

激光具有优异的单色性、指向性、相干性,可聚集成非常小的光斑,形成高能量密度的光。

激光可缩小至自然光达不到的绕射极限附近。

(绕射极限:物理上无法将光聚焦成小于光波长的极限)

通过将激光缩到更小,可将光强度(功率密度)提高至可用于切断金属的程度。

激光

要产生激光,就需要称为激光媒质的原子或分子。

从外部对该激光媒质照射能量(激发光)让原子由低能量的激发态变换为高能量的激发态。

激发态 是指原子内的电子从内侧向外侧外壳移动的状态。

原子状态

原子变换为激发态后,经过一段时间会恢复为基态(从激发态恢复为基态的时间称为荧光寿命)。此时会将接收到的能量以光的形态辐射出去,恢复为基态(自发辐射)。

这种辐射出的光具有特定的波长。

激光的产生原理是让原子变换为 激发态 ,然后提取产生的光加以利用。

原子状态

变换为基态后一定时间的原子,会因自发辐射而辐射出光,并恢复为基态。

但激发光越强,激发态的原子数量就会增加,自发辐射光也会随之增加,从而产生受激辐射现象。

受激辐射是向受激原子入射自发辐射或受激辐射的光后,该光提供受激原子能量,让光成为相应强度的现象。受激辐射后,激发原子恢复为基态。激光的放大正是利用这种受激辐射,激发态的原子数量越多,受激辐射就会连续产生,从而可使光急速放大,并提取为激光。

工业用激光器大致分为 4 种

重叠材质不同的半导体结晶构成活性层(发光层),从而产生光。

让光在构成两端的一对镜面间往返从而放大,最终产生激光。

半导体激光

CO2 激光是以 CO2 气体为媒质的激光。

在填充有 CO2 气体的管内,配置电极板,以产生放电。电极板连接外部电源,使其可投入高频率电力作为激发源。因电极间放电而在气体中产生等离子体,CO2 分子会变换为激发态,该数量增加后开始受激辐射。此外,为了让光往返而产生振荡,相对设置一对镜面,则构成了谐振器。光会在全反射镜和输出镜之间往返,放大后输出为激光。

CO2 激光

侧面抽运方式 YAG 激光是以 YAG 结晶为激光媒质的一种固体激光。

YAG 是指(Yttrium Aluminum Garnet)的结晶,并添加 Nd(Neodymium、钕)。

激光器的构成是在与 YAG 结晶的轴平行的两侧配置激发用 LD。使用一对镜面构成谐振器,在两者之间配置 Q 开关。振荡波长为 1064 nm。

侧面抽运方式是一种投入激发光的面积较大,可提高投入能量并容易获得高功率输出的构成。

脉冲宽度较长,为 100 ns 至数 ms,可产生脉冲能量较大的脉冲,用于对金属的刻印、切断、雕刻、焊接。

YAG 激光、侧面抽运方式

侧面抽运方式 YVO4 激光是以 YVO4 结晶为激光媒质的一种固体激光。

YVO4 是指钒酸钇结晶,与 YAG 同样添加有 Nd(钕)。采用从 YVO4结晶端面单侧照射激发光的方式,以一对镜面构成揩振器,并在镜面间配置结晶和 Q 开关。振荡波长与 Nd:YAG 激光相同,为 1064 nm。放大率较高,可使用较小的结晶,激光器长比 YAG 激光短。因此,光可在更短时间内反复射入结晶,使光强度急剧增加。与 YAG 相比,具有效率更高、峰值更高且脉冲更短的特点。此外,结晶中心部的放大率较大,产生的光为单模光 *,可输出高品质的激光。

YVO4 激光、侧面抽运方式

光纤激光使用光纤为媒质,是长距离通信的中断放大技术发展为高功率输出激光的产物。光纤由中心传输光的核心和以同心圆状包覆核心的金属包层构成。光纤激光以该核心为激光媒质放大光。因此核心中添加有 Yb(Ytteribum、镱)。

光纤激光的构成一般是通过激光二级管(Seed LD)产生的称之为种子光源(Seed Light)的脉冲光,然后通过 2 个以上的光纤放大器进行放大。激发用 LD 配备多个单管发射器(发光层为 1 个)LD。各LD 为低功率输出,因此具有热负荷较小的优点,实现了长寿命。此外,该 LD 数量越多,越可实现高功率输出的激光。光纤激光振荡效率较高,与固体激光和气体激光相比,具有功率消耗较低的特点。

放大用光纤(前置放大器、主要放大器)为 3 层构造,包括核心和 2层金属包层。激发光进入内侧的金属包层(内层包覆)和添加有 Yb的核心内,使核心内部的原子变换为激发态。激光被封闭于核心内前进,再通过激发原子放大,在媒质内越前进,强度越强。与固体激光或气体激光不同,光朝一个方向前进,不会往返。

放大用光纤构造

YVO4 激光和光纤激光的最大差异在于峰值功率和脉冲宽度。

峰值功率代表光强度,脉冲宽度代表光的持续时间。YVO4 具有容易产生高峰值、短脉冲光的特点,光纤具有容易产生低峰值、长脉冲光的特点。激光照射到材料时,加工结果会因脉冲的差异而产生较大变化。

YVO4 和光纤激光的脉冲

YVO4 激光的脉冲会对材料短时间照射高强度的光,因此表面层较浅的区域会急速升温,然后立即冷却。照射部分在沸腾状态下被冷却为发泡状态,蒸发后形成较浅的刻印。在热量传递前照射便会结束,因此对周围的热影响较小。

光纤激光的脉冲,则是长时间照射低强度的光。材料温度缓慢上升,长时间维持液体或蒸发的状态。因此,光纤激光适合刻入量变大、或金属承受大量热量而氧化需要变黑的黑色刻印。

补充:

关于激光器,基恩士独创了 S-MOPA 激光器,

*Solid-state Master Oscillator Power Amplifier:直接将 YVO4 激光器的高品质光束,结合光纤激光中所使用的放大器技术,实现高功率输出化。光源 LD(激光二级管)采用散热性较高的单管发射器,实现长寿命化。

S-MOPA 的特点在于由 2 个阶段构成,首先通过 YVO4 激光器(主激光器)产生脉冲,然后通过 YVO4 的放大器将该脉冲放大。因此可维持主激光器所产生的高峰值、高品质脉冲,同时进行放大。此外,采用具有光纤激光特点的单管发射器激发 LD,与固体激光的巴条发射器 LD(单个半导体芯片中具有多个发光面的 LD)相比,热密度较低,冷却负荷较小,虽为固体激光,却实现了长寿命。

试想过你的生活缺少了数字是什么概念吗?那将是一个混乱的世界,无论是你的手机号码、你的身份z号码、还是你家的门牌号,这些全部都是用数字表达的!电子游戏、电子邮件、数码音乐、数码照片、多媒体光盘、网络会议、远程教学、网上购物、电子银行和电子货币……几乎一切的东西都可以用0和1来表示。电脑和互联网的出现让人们有了更大的想象和施展的空间,我们的生活就在这简单的“0”“1”之间变得丰富起来、灵活起来、愉悦起来,音像制品、手机、摄像机、数码相机、MP3、袖珍播放机、DVD播放机、PDA、多媒体、多功能游戏机、ISDN等新潮电子产品逐渐被人们所认识和接受,数字化被我们随身携带着,从而拥有了更加多变的视听新感受,音乐和感觉在数字化生活中静静流淌……

数字生活已成为信息化时代的特征,它改变着人类生活的方方面面,在此背后,隐藏着新材料的巨大功勋,新材料是数字生活的“幕后英雄”。

计算机是数字生活中的重要设备,计算机的核心部件是中央处理器(CPU)和存储器(RAM),它们是以大规模集成电路为基础建造起来的,而这些集成电路都是由半导体材料做成的,Si片是第一代半导体材料,集成电路中采用的Si片必须要有大的直径、高的晶体完整性、高的几何精度和高的洁净度。为了使集成电路具有高效率、低能耗、高速度的性能,相继发展了GaAs、InP等第二代半导体单晶材料。SiC、GaN、ZnSe、金刚石等第三代宽禁带半导体材料、SiGe/Si、SOI(Silicon On Insulator)等新型硅基材料、超晶格量子阱材料可制作高温(300~500°C)、高频、高功率、抗辐射以及蓝绿光、紫外光的发光器件和探测器件,从而大幅度地提高原有硅集成电路的性能,是未来半导体材料的重要发展方向。

人机交换,常常需要将各种形式的信息,如文字、数据、图形、图像和活动图像显示出来。静止信息的显示手段最常用的如打印机、复印机、传真机和扫描仪等,一般称为信息的输出和输入设备。为提高分辨率以及输入和输出的速度,需要发展高灵敏度和稳定的感光材料,例如激光打印机和复印机上的感光鼓材料,目前使用的是无机的硒合金和有机的酞菁染料。显示活动图像信息的主要部件是阴极射线管(CRT),广泛地应用在计算机终端显示器和平面电视上,CRT目前采用的电致发光材料,大都使用稀土掺杂(Tb3+、Sn3+、Eu3+等)和过渡元素掺杂(Mn2+)的硫化物(ZnS、CdS等)和氧化物(Y2O3、YAlO3)等无机材料。

为了减小CRT庞大的体积,信息显示的趋势是高分辨率、大显示容量、平板化、薄型化和大型化,为此主要采用了液晶显示技术(LCD)、场致发射显示技术(FED)、等离子体显示技术(PDP)和发光二极管显示技术(LED)等平板显示技术,广泛应用在高清晰度电视(HDTV)、电视电话、计算机(台式或可移动式)显示器、汽车用及个人数字化终端显示等应用目标上,CRT不再是一支独秀,而是形成与各种平板显示器百花争艳的局面。

在液晶显示技术中采用的液晶材料早已在手表、计算器、笔记本电脑、摄像机中得到应用,液晶材料较早使用的是苯基环己烷类、环己基环己烷类、吡啶类等向列相和手征相材料,后来发展了铁电型(FE)液晶,响应时间在微秒级,但铁电液晶的稳定性差,只能用分支法(side-chain)来改进。目前趋向开发反铁电液晶,因为它们的稳定性较高。

液晶显示材料在大屏幕显示中有一定的困难,目前作为大屏幕显示的主要候选对象为等离子体显示器(PDP)和发光二极管(LED)。PDP所用的荧光粉为掺稀土的钡铝氧化物。用类金刚石材料作冷阴极和稀土离子掺杂的氧化物作发光材料,推动场发射显示(FED)的发展。制作高亮度发光二极管的半导体材料主要为发红、橙、黄色的GaAs基和GaP基外延材料、发蓝光的GaN基和ZnSe基外延材料等。

由于因特网和多媒体技术的迅速发展,人类要处理、传输和存储超高信息容量达太(兆兆)数字位(Tb,1012bits),超高速信息流每秒达太位(Tb/s),可以说人类已经进入了太位信息时代。现代的信息存储方式多种多样,以计算机系统存储为例,存储方式分为随机内存储、在线外存储、离线外存储和脱机存储。随机内存储器要求集成度高、数据存取速度快,因此一直以大规模集成的微电子技术为基础的半导体动态随机存储器(DRAM)为主,256兆位的随机动态存储器的晶体管超过2亿个。外存储大都采用磁记录方式,磁存储介质的主要形式为磁带、磁泡、软磁盘和硬磁盘。磁存储密度的提高主要依赖于磁介质材料的改进,相继采用了磁性氧化物(如g-Fe2O3、CrO2、金属磁粉等)、铁氧体系、超细磁性氧化物粉末、化学电镀钴镍合金或真空溅射蒸镀Co基合金连续磁性薄膜介质等材料,磁存储的信息存储量从而有了很大的提高。固体(闪)存储器(flash memory)是不挥发可擦写的存储器,是基于半导体二极管的集成电路,比较紧凑和坚固,可以在内存与外存间插入使用。记录磁头铁芯材料一般用饱和磁感大的软磁材料,如80Ni-20Fe、Co-Zr-Nb、Fe-Ta-C、45Ni-55Fe、Fe-Ni-N、Fe-Si、Fe-Si-Ni、67Co-10Ni-23Fe等。近年来发展起来的巨磁阻(GMR)材料,在一定的磁场下电阻急剧减小,一般减小幅度比通常磁性金属与合金的磁电阻数值约高10余倍。GMR一般由自由层/导电层/钉扎层/反强磁性层构成,其中自由层可为Ni-Fe、Ni-Fe/Co、Co-Fe等强磁体材料,在其两端安置有Co-Cr-Pt等永磁体薄膜,导电层为数nm的铜薄膜,钉扎层为数nm的软磁Co合金,磁化固定层用5~40nm的Ni-O、Ni-Mn、Mn-In、Fe-Cr-Pt、Cr-Mn-Pt、Fe-Mn等反强磁体,并加Ru/Co层的积层自由结构。采用GMR效应的读出磁头,将磁盘记录密度一下子提高了近二十倍,因此巨磁阻效应的研究对发展磁存储有着非常重要的意义。

声视领域内激光唱片和激光唱机的兴起,得益于光存储技术的巨大发展,光盘存贮是通过调制激光束以光点的形式把信息编码记录在光学圆盘镀膜介质中。与磁存储技术相比,光盘存储技术具有存储容量大、存储寿命长;非接触式读/写和擦,光头不会磨损或划伤盘面,因此光盘系统可靠,可以自由更换;经多次读写载噪比(CNR)不降低。光盘存储技术经过CD(Compact Disk)、DVD(Digital Versatile Disk)发展到将来的高密度DVD(HD-DVD)、超高密度DVD(SHD-DVD)过程中,存储介质材料是关键,一次写入的光盘材料以烧蚀型(Tc合金薄膜,Se-Tc非晶薄膜等)和相变型(Te-Ge-Sb非晶薄膜、AgInTeSb系薄膜、掺杂的ZnO薄膜、推拉型偶氮染料、亚酞菁染料)为主,可擦重写光盘材料以磁光型(GdCo、TeFe非晶薄膜、BiMnSiAl薄膜、稀土掺杂的石榴石系YIG、Co-Pt多层薄膜)为主。光盘存储的密度取决于激光管的波长,DVD盘使用的InGaAlP红色激光管(波长650nm)时,直径12cm的盘每面存储为4.7千兆字节(GB),而使用ZnSe(波长515nm)可达12GB,将来采用GaN激光管(波长410nm),存储密度可达18GB。要读写光盘里的信息,必须采用高功率半导体激光器,所用的激光二极管采用化合物半导体GaAs、GaN等材料。

激光器除了在光盘存储应用之外,在光通信中的作用也是众所周知的。由于有了低阈值、低功耗、长寿命及快响应的半导体激光器,使光纤通信成为现实。光通讯就是由电信号通过半导体激光器变为光信号,而后通过光导纤维作长距离传输,最后再由光信号变为电信号为人接收。光纤所传输的光信号是由激光器发出的,常用的为半导体激光器,所用材料为GaAs、GaAlAs、GaInAsP、InGaAlP、GaSb等。在接受端所用的光探测器也为半导体材料。缺少光导纤维,光通信也只能是“纸上谈兵”。低损耗的光学纤维是光纤通信的关键材料,目前所用的光学纤维传感材料主要有低损耗石英玻璃、氟化物玻璃和Ga2S3为基础的硫化物玻璃和塑料光纤等,1公斤石英为主的光纤可代替成吨的铜铝电缆。光纤通信的出现是信息传输的一场革命,信息容量大、重量轻、占用空间小、抗电磁干扰、串话少、保密性强,是光纤通信的优点。光纤通信的高速发展为现代信息高速公路的建设和开通起到了至关重要的作用。

除了有线传播外,信息的传播还采用无线的方式。在无线传播中最引人注目的发展是移动电话。移动电话的用户愈多,所使用的频率愈高,现在正向千兆周的频率过渡,电话机的微波发射与接收亦是靠半导体晶体管来实现,其中部分Si晶体管正在被GaAs晶体管所取代。在手机中广泛采用的高频声表面波SAW(Surface Acoustic Wave)及体声波BAW(Bulk Surface Acoustic Wave)器件中的压电材料为a-SiO2、LiNbO3、LiTaO3、Li2B4O7、KNbO3、La3Ga5SiO14等压电晶体及ZnO/Al2O3和SiO2/ZnO/DLC/Si等高声速薄膜材料,采用的微波介质陶瓷材料则集中在BaO-TiO2体系、BaO-Ln2O3-TiO2(Ln=La,Pr,Nd,Sm,Eu,Gd)体系、复合钙钛矿A(B1/3B¢2/3)O3体系(A=Ba,Sr;B=Mg,Zn,Co,Ni,Mn;B¢=Nb,Ta)和铅基复合钙钛矿体系等材料上。

随着智能化仪器仪表对高精度热敏器件需求的日益扩大,以及手持电话、掌上电脑PDA、笔记本电脑和其它便携式信息及通信设备的迅速普及,进一步带动了温度传感器和热敏电阻的大量需求,负温度系数(NTC)热敏电阻是由Co、Mn、Ni、Cu、Fe、Al等金属氧化物混合烧结而成,其阻值随温度的升高呈指数型下降,阻值-温度系数一般在百分之几,这一卓越的灵敏度使其能够探测极小的温度变化。正温度系数(PTC)热敏电阻一般都是由BaTiO3材料添加少量的稀土元素经高温烧结的敏感陶瓷制成的,这种材料在温度上升到居里温度点时,其阻值会以指数形式陡然增加,通常阻值-温度变化率在20~40%之间。前者大量使用在镍镉、镍氢及锂电池的快速充电、液晶显示器(LCD)图像对比度调节、蜂窝式电话和移动通信系统中大量采用使用的温度补偿型晶体振荡器等中,来进行温度补偿,以保证器件性能稳定;此外还在计算机中的微电机、照相机镜头聚焦电机、打印机的打印头、软盘的伺服控制器和袖珍播放机的驱动器等中,发现它的身影。后者可以用于过流保护、发热器、彩电和监视器的消磁、袖珍压缩机电机的启动延迟、防止笔记本电脑常效应管(FET)的热击穿等。

为了保证信息运行的通畅,还有许多材料在默默地作着贡献,例如,用于制作绿色电池的材料有:镍氢电池的正、负极材料用MH合金和Ni(OH)2材料、锂离子电池的正、负极用LiCoO2、LiMn2O4和MCMB碳材料等电极材料;移动电话、PC机以及诸如数码相机、MD播放机/录音机、DVD设备和游戏机等数字音/视频设备等中钽电容器所用材料;现代永磁材料Fe14Nd2B在制造永磁电极、磁性轴承、耳机及微波装置等方面有十分重要的用途;印刷电路板(PCB)及超薄高、低介电损耗的新型覆铜板(CCL)用材料;环氧模塑料、氧化铝和氮化铝陶瓷是半导体和集成电路芯片的封装材料;集成电路用关键结构与工艺辅助材料(高纯试剂、特种气体、塑封料、引线框架材料等),不一而足,这些在浩瀚的材料世界里星光灿烂的新材料,正在数字生活里发挥着不可或缺的作用。

随着科技的发展,大规模集成电路将迎来深亚微米(0.1mm)硅微电子技术时代,小于0.1mm的线条就属于纳米范畴,它的线宽就已与电子的德布罗意数相近,电子在器件内部的输运散射也将呈现量子化特性,因而器件的设计将面临一系列来自器件工作原理和工艺技术的棘手问题,导致常说的硅微电子技术的“极限”。由于光子的速度比电子速度快得多,光的频率比无线电的频率高得多,为提高传输速度和载波密度,信息的载体由电子到光子是必然趋势。目前已经发展了许多种激光晶体和光电子材料,如Nd:YAG、Nd:YLF、Ho:YAG、Er:YAG、Ho:Cr:Tm:YAG、Er:YAG、Ho:Cr:Tm:YLF、Ti:Al2O3、YVO4、Nd:YVO4、Ti:Al2O3、KDP、KTP、BBO、BGO、LBO、LiNbO3、K(Ta,Nb)O3、Fe:KnBO3、BaTiO3、LAP等,所有这些材料将为以光通信、光存储、光电显示为主的光电子技术产业作出贡献。随着信息材料由电子材料、微电子材料、光电子材料向光子材料发展,将会出现单电子存储器、纳米芯片、量子计算机、全光数字计算机、超导电脑、化学电脑、生物电脑和神经电脑等纳米电脑,将会极大地影响着人类的数字生活。

本世纪以来,以数字化通信(Digital Communication)、数字化交换(Digital Switching)、数字化处理(Digital Processing)技术为主的数字化生活(Digital Life)正在向我们招手,一步步地向我们走来——清晨,MP3音箱播放出悦耳的晨曲,催我们按时起床;上班途中,打开随身携带的笔记本电脑,进行新一天的工作安排;上班以后,通过互联网召开网络会议、开展远程教学和实时办公;在下班之前,我们远程启动家里的空调和湿度调节器,保证家中室温适宜;下班途中,打开手机,悠然自在观看精彩的影视节目;进家门前,我们接收网上订购的货物;回到家中,和有线电视台进行互动,观看和下载喜欢的影视节目和歌曲,制作多媒体,也可进入社区互联网,上网浏览新闻了解天气……这一切看上去是不是很奇妙?似乎遥不可及。其实它正在和将要发生在我们身边,随着新一代家用电脑和互联网的出现,如此美好数字生活将成为现实。当享受数字生活的同时,饮水思源,请不要忘记为此作出巨大贡献的功臣——绚丽多彩的新材料世界!


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8598423.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-18
下一篇 2023-04-18

发表评论

登录后才能评论

评论列表(0条)

保存