关于激光的知识!

关于激光的知识!,第1张

刚好我正在学习一门关于激光的课程,先简单凭印象给你讲解下,如果有更详细的需要,你可以发邮件给我。

如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大,也就是激光。

激光的发散角很小,适于远距离传播。

当采取光学处理,可以将激光光束聚焦, 因而可以产生很强的能量,可用于工业加工。工业上常用的激光器有:二氧化碳激光器,能产生10kw以上的功率,ND:YAG激光器能产生约5kw的功率,半导体激光器,其激光束可以叠加能以较小的体积得到很强的功率,广泛用于各个领域。还有非常重要的excimer准分子激光器,能用于切割加工几乎所有的材料,但是工业上难以得到较强功率,相比前三种,用途虽多,但是应用没有他们广泛。值得一提的是,现在流行的激光近视眼矫正以及激光美容都是采用准分子激光器。

按照功率由低到高,激光的应用有从超市的商品条码扫描器,教学用的激光笔,光驱里用到的激光指示器,工业上用于加工,最厉害的数激光武器了。

激光的能量主要取决于它的波长,波长越短,能量越高。

使用或接触激光要注意安全。激光对人体造成的危害主要是皮肤,眼睛。特别是眼睛,千万不可直视激光,要知道眼睛里面的晶状体可以将激光的能量放大十万倍!!!(因为晶状体可以将激光光斑缩小三个数量级,对应能量扩大六个数量级!)瞬间强大的能量会将你的视网膜烧毁甚至会灼伤更内部的“部件”。因此,严重警告!!!!!:眼睛不可直视激光。

第六课 激光的基础知识

相信激光这名词对大家来说一点也不陌生。在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。在工业上,激光常用于切割或微细加工。在军事上,激光被用来拦截导d。科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。

激光的特性

高亮度、高方向性、高单色性和高相干性是激光的四大特性。

(1)激光的高亮度:固体激光器的亮度更可高达 1011W/cn2Sr 。不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。

(2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件。

(3)激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。

(4)激光的高相干性:相干性主要描述光波各个部分的相位关系。

正是激光具有如上所述的奇异特性因此在生活、工业加工、军事、科研等领域中得到了广泛地应用。

激光产生原理

激光的发展有很长的历史,它的原理早在 1917 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光英文名是 Laser,即 Light Amplification by the Stimulated Emission of Radiation 的缩写。激光的英文全名已完全表达了制造激光的主要过程。但在阐释这个过程之前,我们必先了解物质的结构,与及光的辐射和吸收的原理。

物质由原子组成。图一是一个碳原子的示意图。原子的中心是原子核,由质子和中子组成。质子带有正电荷,中子则不带电。原子的外围布满着带负电的电子,绕着原子核运动。有趣的是,电子在原子中的能量并不是任意的。描述微观世界的量子力学告诉我们,这些电子会处于一些固定的「能级」,不同的能级对应于不同的电子能量。为了简单起见,我们可以如图一所示,把这些能级想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目也不同,例如最低的轨道 (也是最近原子核的轨道) 最多只可容纳 2 个电子,较高的轨道则可容纳 8 个电子等等。事实上,这个过份简化了的模型并不是完全正确的 [1],但它足以帮助我们说明激光的基本原理。

电子可以透过吸收或释放能量从一个能级跃迁至另一个能级。例如当电子吸收了一个光子 [2] 时,它便可能从一个较低的能级跃迁至一个较高的能级 (图二 a)。同样地,一个位于高能级的电子也会透过发射一个光子而跃迁至较低的能级 (图二 b)。在这些过程中,电子吸收或释放的光子能量总是与这两能级的能量差相等。由于光子能量决定了光的波长,因此,吸收或释放的光具有固定的颜色。

当原子内所有电子处于可能的最低能阶时,整个原子的能量最低,我们称原子处于基态。图一显示了碳原子处于基态时电子的排列状况。当一个或多个电子处于较高的能阶时,我们称原子处于受激态。前面说过,电子可透过吸收或释放在能阶之间跃迁。跃迁又可分为三种形式:

(1)自发吸收 - 电子透过吸收光子从低能阶跃迁到高能阶 (图二 a)。

(2)自发辐射 - 电子自发地透过释放光子从高能阶跃迁到较低能阶 (图二 b)。

(3)受激辐射 - 光子射入物质诱发电子从高能阶跃迁到低能阶,并释放光子。入射光子与释放的光子有相同的波长和相,此波长对应于两个能阶的能量差。一个光子诱发一个原子发射一个光子,最后就变成两个相同的光子 (图二 c)。

激光基本上就是由第三种跃迁机制所产生的。

产生激光还有一个巧妙之处,就是要实现所谓粒子数反转的状态。以红宝石激光为例 (图三),原子首先吸收能量,跃迁至受激态。原子处于受激态的时间非常短,大约 10-7秒后,它便会落到一个称为亚稳态的中间状态。原子停留在亚稳态的时间很长,大约是 10-3秒或更长的时间。电子长时间留在亚稳态,导致在亚稳态的原子数目多于在基态的原子数目,此现象称为粒子数反转。粒子数反转是产生激光的关键,因为它使透过受激辐射由亚稳态回到基态的原子,比透过自发吸收由基态跃迁至亚稳态的原子为多,从而保证了介质内的光子可以增多,以输出激光。

激光器的结构

激光器一般包括三个部分。

1、激光工作介质

激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转世非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。

2、激励源

为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。

3、谐振

有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块光大部分反射、少量透射出去,以使激光可透过这块镜子而射出。被反射回到工作介质的光,继续诱发新的受激辐射,光被放大。因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生强烈的激光,从部分反射镜子一端输出。

下面以红宝石激光器为例来说明激光的形成。工作物质是一根红宝石棒。红宝石是掺入少许3价铬离子的三氧化二铝晶体。实际是掺入质量比约为0.05%的氧化铬。由于铬离子吸收白光中的绿光和蓝光,所以宝石呈粉红色。1960年梅曼发明的激光器所产用的红宝石是一根直径0.8cm、长约8cm的圆棒。两端面是一对平行平面镜,一端镀上全反射膜,一端有10%的透射率,可让激光透出。

红宝石激光器中,用高压氙灯作“泵浦”,利用氙灯所发出的强光激发铬离子到达激发态E3,被抽运到E3上的电子很快(~10-8s)通过无辐射跃迁到E2。E2是亚稳态能级,E2到E1的自发辐射几率很小,寿命长达10-3s,即允许粒子停留较长时间。于是,粒子就在E2上积聚起来,实现E2和E1两能级上的粒子数反转。从E2到E1受激发射的波长是694.3nm的红色激光。由脉冲氙灯得到的是脉冲激光,每一个光脉冲的持续时间不到1ms,每个光脉冲能量在10J以上;也就是说,每个脉冲激光的功率可超过10kW的数量级。注意到上述铬离子从激发到发出激光的过程中涉及到三条能级,故称为三能级系统。由于在三能级系统中,下能级E1是基态,通常情况下积聚大量原子,所以要达到粒子数反转,要有相当强的激励才行。

从上面的叙述中我们注意到,激光器要工作必须具备三个基本条件,即激光物质、光谐振器和泵浦源,其基本结构如图四所示。

通过泵浦源将能量输入激光物质,使其实现粒子数反转,由自发辐射产生的微弱的光在激光物质中得以放大,由于激光物质两端放置了反射镜,有一部分符合条件的光就能够反馈回来再 参加激励,这时被激励的光就产生振荡,经过多次激励,从右端反射镜中投射出来的光就是单色性、方向性、相干性都很好的高亮度的激光。不同类型的激光器在发光物质、反射镜以及泵浦源等方面所用材料有所区别,下文提到的各种激光器也正是基于这些不同进行分类的。

激光器的种类

对激光器有不同的分类方法,一般按工作介质的不同来分类,在可以分为固体激光器、气体激光器、液体激光器和半导体激光器。

1、固体激光器

一般讲,固体激光器具有器件小、坚固、使用方便、输出功率大的特点。这种激光器的工作介质是在作为基质材料的晶体或玻璃中均匀掺入少量激活离子,除了前面介绍用红宝石和玻璃外,常用的还有钇铝石榴石(YAG)晶体中掺入三价钕离子的激光器,它发射1060nm的近红外激光。固体激光器一般连续功率可达100W以上,脉冲峰值功率可达109W。

2、气体激光器

气体激光器具有结构简单、造价低; *** 作方便;工作介质均匀,光束质量好;以及能长时间较稳定地连续工作的有点。这也是目前品种最多、应用广泛的一类激光器,占有市场达60%左右。其中,氦-氖激光器是最常用的一种。

3、半导体激光器

半导体激光器是以半导体材料作为工作介质的。目前较成熟的是砷化镓激光器,发射840nm的激光。另有掺铝的砷化镓、硫化铬硫化锌等激光器。激励方式有光泵浦、电激励等。这种激光器体积小、质量轻、寿命长、结构简单而坚固,特别适于在飞机、车辆、宇宙飞船上用。在70年代末期,由于光纤通讯和光盘技术的发展大大推动了半导体激光器的发展。

4、液体激光器

常用的是染料激光器,采用有机染料为工作介质。大多数情况是把有机染料溶于溶剂中(乙醇、丙酮、水等)中使用,也有以蒸气状态工作的。利用不同染料可获得不同波长激光(在可见光范围)。染料激光器一般使用激光作泵浦源,例如常用的有氩离子激光器等。液体激光器工作原理比较复杂。输出波长连续可调,且覆盖面宽是它的优点,使它也得到广泛应用。

激光简史和我国的激光技术

自爱因斯坦1917年提出受激辐射概念后,足足经过了40年,直到1958年,美国两位微波领域的科学家汤斯(C.H.Townes)和肖洛(A.I.Schawlaw)才打破了沉寂的局面,发表了著名论文《红外与光学激射器》,指出了受激辐射为主的发光的可能性,以及必要条件事实现“粒子数反转”。他们的论文史在光学领域工作的科学家马上兴奋起来,纷纷提出各种实现粒子数反转的实验方案,从此开辟了崭新的激光研究领域。

同年苏联科学家巴索夫和普罗霍罗夫发表了《实现三能级粒子数反转和半导体激光器建议》论文,1959年9月汤斯又提出了制造红宝石激光器的建议……1960年5月15日加州休斯实验室的梅曼(T.H.Maiman)制成了世界上第一台红宝石激光器,获得了波长为694.3nm的激光。梅曼是利用红宝石进体做发光材料,用发光密度很高的脉冲氙灯做激发光源(如图所示),实际他的研究早在1957年就开始了,多年的努力终于活动了历史上第一束激光。1964年,汤斯、巴索夫和普罗霍夫由于对激光研究的贡献分享了诺贝尔物理学奖。

中国第一台红宝石激光器于1961年8月在中国科学院长春光学精密机械研究所研制成功。这台激光器在结构上比梅曼所设计的有了新的改进,尤其是在当时我国工业水平比美国低得多,研制条件十分困难,全靠研究人员自己设计、动手制造。在这以后,我国的激光技术也得到了迅速发展,并在各个领域得到了广泛应用。1987年6月,1012W的大功率脉冲激光系统——神光装置,在中国科学院上海光学精密机械研究所研制成功,多年来为我国的激光聚变研究作出了很好的贡献。

思考题:1、激光和我们生活中普通光有什么区别?

2、请列举你生活中用到激光的地方。

第二章 光学谐振腔

本章主要讲授光学谐振腔的构成和作用;光学谐振腔的模式;光学谐振腔的几何分析方法和衍射理论分析方法;平行平面腔模的迭代解法;稳定球面镜共焦腔;一般稳定球面腔及等价共焦腔;非稳定谐振腔。重点:学会写一些光学系统的传播矩阵;能判断一个腔是否稳定;掌握实现多纵模、单纵模振荡的方法;选择单模的方法如FP法、复合腔法、并能给出相应的模间距;弄清开腔模建立过程。难点:孔阑传输线概念。

一、光学谐振腔的构成

最简单的光学谐振腔是在激活介质两端恰当地放置两个镀有高反射率的反射镜构成。常用的基本概念:

光轴:光学谐振腔中间垂直与镜面的轴线

孔径:光学谐振腔中起着限制光束大小、形状的元件,大多数情况下,孔径是激活物质的两个端面,但一些激光器中会另外放置元件以限制光束为理想的形状。

二、光学谐振腔的种类

谐振腔的开放程度,闭腔、开腔、气体波导腔

开放式光学谐振腔(开腔)通常可以分为稳定腔、非稳定腔

反射镜形状,球面腔与非球面腔,端面反射腔与分布反馈腔

反射镜的多少,两镜腔与多镜腔,简单腔与复合腔

三、光学谐振腔的作用

提供光学正反馈作用 :使得振荡光束在腔内行进一次时,除了由腔内损耗和通过反射镜输出激光束等因素引起的光束能量减少外,还能保证有足够能量的光束在腔内多次往返经受激活介质的受激辐射放大而维持继续振荡。影响谐振腔的光学反馈作用的两个因素:组成腔的两个反射镜面的反射率;反射镜的几何形状以及它们之间的组合方式。

产生对振荡光束的控制作用:有效地控制腔内实际振荡的模式数目,获得单色性好、方向性强的相干光,可以直接控制激光束的横向分布特性、光斑大小、谐振频率及光束发散角,可以控制腔内光束的损耗,在增益一定的情况下能控制激光束的输出功率。

四、光学谐振腔的模式(波型)

1. 纵模-纵向的稳定场分布,激光器中出现的纵模数有两个因素决定,工作原子自发辐射的荧光线宽越大,可能出现的纵模数越多;激光器腔长越大,相邻纵模的频率间隔越小,同样的荧光谱线线宽内可以容纳的纵模数越多。

2. 横模-横向X-Y面内的稳定场分布。横模(自再现模): 在腔反射镜面上经过一次往返传播后能“自再现”的稳定场分布。

3. 激光模式的测量方法。横模的测量方法:在光路中放置一个光屏;拍照;小孔或刀口扫描方法获得激光束的强度分布,确定激光横模的分布形状。纵模的测量方法:法卜里-珀洛F-P扫描干涉仪测量,实验中利用球面扫描干涉仪。

五、平行平面腔Fox-Li数值迭代法

平行平面腔的优点是:光束方向性好,模体积大,容易获得单模模振荡,缺点是:谐振腔调整精度要求高,衍射损耗和几何损耗都比较大,其稳定性介于稳定腔与非稳定腔之间,不适用于小增益器件,在中等以上功率的激光器中仍普遍应用。

谐振腔的迭代解法的思路:1. 假设在某一镜面上存在一个初始场分布,将它代入迭代公式,计算在腔内经第一次渡越而在第二个镜面上生成的场;2. 利用(1)所得到的代入迭代公式,计算在腔内经第二次渡越而在第一个镜上生成的场;3. 如此反复运算多次后,观察是否形成稳态场分布。

对称矩形(方形镜)平行平面镜腔是指谐振腔镜面是平行的,并且在垂直与光轴方向上的尺度有限。条形镜平行平面腔是指镜面在某一方向上的尺度有限,而另一方向上的尺度是无限的。分析对称矩形、条形镜平行平面腔、圆形镜平行平面腔、平行平面腔的迭代解法。

六、共焦腔与平行平面腔之不同

1. 镜面上基模场的分布:平行平面腔基模分布在整个镜面上,呈偶对称性分布,镜面中心处振幅最大,向镜边缘振幅逐渐降低;共焦腔基模在镜面上的分布在厄米-高斯近似下,与镜的横向几何尺寸无关,仅由腔长决定;一般共焦腔模集中在镜面中心附近;

2. 相位分布平行平面腔的反射镜不是等相面;而共焦腔的反射镜为等相面;

3. 单程损耗平行平面腔衍射损耗远高于共焦腔的衍射损耗;

4. 单程相移与谐振频率平行平面腔中横模阶次m、n的变化引起的频率改变远远小于纵模阶次q的改变对谐振频率的改变;在共焦腔中, m、n的变化或q的改变对谐振频率的影响具有相同的数量级。

七、圆形镜对称共焦腔镜面模的振幅和相位分布

基模在镜面上的振幅分布是高斯型的,整个镜面上没有节线在镜面中心处(r=0) 处,振幅最大。基模在镜面上的光斑半径(当基模振幅下降到中心值的1/e处与镜面中心的距离):对于高阶模,在沿辐角方向有节线,数目为p;沿半径方向有节圆,节圆数为l;p、l增加,模的光斑半径增大,并且光斑半径随着l的增大比随着 p增大来的更快;高阶模的光斑半径:振幅降低至最外面的极大值的1/e处的点与镜面中心的距离;圆形共焦镜面本身也是等相位面。

八、一般稳定球面镜腔

一般球面镜腔:由两个曲率半径不同的球面镜按照任意间距组成的腔

一般稳定球面镜腔的模式理论:可以从光腔的衍射积分方程出发严格建立,以共焦腔的模式理论为基础,等价共焦腔的方法。

一般稳定球面腔与共焦腔的等价性:根据共焦腔模式理论,任何一个共焦腔与无穷多个稳定球面腔等价;而任何一个稳定球面镜腔唯一地等价于一个共焦腔。一般稳定球面腔与共焦腔的等价性:指它们具有相同的行波场。

九、非稳定谐振腔

非稳定腔的优点:1. 大的可控模体积,通过扩大反射镜的尺寸,扩大模的横向尺寸;2. 可控的衍射耦合输出,输出耦合率与腔的几何参数g有关;3. 容易鉴别和控制横模;4. 易于得到单端输出和准直的平行光束。非稳定腔的缺点:1. 输出光束截面呈环状;2.光束强度分布是不均匀的,显示出某种衍射环。

十、选模技术

激光的优点在于它具有良好的单色性、方向性和相干性。理想的激光器输出光束应该只有一个模式,但是对于实际的激光器,如果不采取模式选择,它们的工作状态往往是多模的。含有高阶模式横模的激光束光强分布不均匀,光束发散角大。含有多纵模及多横模的激光器单色性及相干性差。在激光准直、激光加工、非线性光学、激光远程测距等领域都需要基横模激光束。在精密干涉测量,光通讯及大面积全息照相等应用中更要求激光是单横模和单纵模光束。因此,设计和改进激光器的谐振腔以获得单模输出是一个重要课题。

横模的选择:在稳定腔中,基模的衍射损耗最小,随着横模阶次的增高,衍射损耗将迅速增加。谐振腔中不同的横模具有不同的衍射损耗是横模选择的物理基础。为了提高模式的鉴别能力,应该尽量增大高阶模式和基模的衍射损耗比,同时,还应该尽量增大衍射损耗在总损耗中占有的比例;衍射损耗的大小及模鉴别能力的值与谐振腔的腔型及菲涅耳系数有关。

纵模的选择:一般的谐振腔中,不同的纵模具有相同的损耗,因而进行模式鉴别和选择时应可以利用不同纵模的不同增益。同时,也可以引入人为的损耗差。腔内插入F-P标准具法:调整F-P标准具的参数,使得在增益线宽 范围内,只有一个透射峰,同时在一个透射峰谱线宽度范围内只有一个模式起振,则可以实现单纵模工作。即选模条件为:1. 选择合适的标准具光学长度,使标准具的自由光谱范围与激光器的增益线宽相当。使在增益线宽内,避免存在两个或多个标准具的透过峰。2. 选择合适的标准具界面反射率,使得被选纵模的相邻纵模由于透过率低,损耗大而被抑制。

光学谐振腔的种类及功能

作者:opticsky 日期:2006-09-16

字体大小: 小 中 大

光学谐振腔由两个或两个以上光学反射镜面组成、能提供光学正反馈作用的光学装置。两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。两块反射镜之间的距离为腔长。其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。两者有时也分别称为高反镜和低反镜。

种类 按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,称为共心腔。

如果光束在腔内传播任意长时间而不会逸出腔外,则称该腔为稳定腔,否则称为不稳定腔。上述列举的谐振腔都属稳定腔。用两块凸面镜组成的谐振腔为不稳定腔。平凹腔中如腔长太长,使凹球面的球心落在腔内,则腔中除沿光轴的光线外,其它方向光束经多次反射后必然会逸出腔外,故也为不稳定腔。对称凹面腔中,如腔长太长,使两球面球心分别落在腔中心点靠近自身一侧,也是一种不稳定腔。

稳定腔 光学谐振腔中任一束傍轴光束离光轴的距离,如果在它来回反射过程中不会无限增加,则这种腔必定是稳定腔。若用L代表腔长,R1、R2分别为两球面反射镜的曲率半径,则稳定腔应满足如下条件:

从第一个不等式看,只有R1、R2同时大于腔长或同时小于腔长时,才能形成稳定腔。从第二个不等式看,R1和R2必须比腔长小,也不能小得太多。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8677241.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存