半导体是谁发明的?

半导体是谁发明的?,第1张

法拉第发现的,不是发明。

1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但法拉第发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。

不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特性。

扩展资料:

半导体的应用:

最早的实用“半导体”是「电晶体(Transistor)/二极体(Diode)」。

1、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。

2、发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。

3、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。

4、半导体致冷器的发展, 它也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应.

参考资料来源:参考资料来源——半导体

赫伯特·克勒默1928年出生在德国(当时处于魏玛共和国时期,但国号依旧为德意志帝国)魏玛,父亲是公务员,母亲是家庭主妇,都来自技术工家庭,父母虽然没有受过高等教育,但是希望赫伯特·克勒默能获得最好的教育,他们并没有为儿子制订具体的学术方向,赫伯特·克勒默自己选择了数学、物理和化学。1947年中学毕业后,他在耶拿大学学习物理学,曾听过德国物理学家弗里德里希·洪德(Friedrich Hund)的课。

他在柏林实习时,利用“空中桥梁”逃往了西德,并在格丁根大学完成了关于晶体管中热电子效应的理论物理学研究和博士论文赫伯特-克勒默简介,导师是德国物理学家里夏德·贝克(RichardBecker),1952年获得博士头衔。此后他将职业定位在物理学和半导体技术研究上。

克勒默先是在德国联邦邮政中央通讯实验室的一个半导体研究小组工作,并自称为是一个“应用理论学者”。1954年他前往美国,工作于普林斯顿大学和帕罗奥图的多家研究机构,1968年至1976年任博尔德科罗拉多大学(UniversityofColoradoatBoulder,科罗拉多州博尔德县)物理学教授。1976年,克勒默说服圣塔芭芭拉加利福尼亚大学的电子和计算机工程系,将有限的项目资金用于刚刚形成的化合物半导体技术,而不是投资发展主流的硅技术,这一决定使得圣塔芭芭拉加利福尼亚大学占据了这一领域的领导地位。

克勒默来到圣塔芭芭拉加利福尼亚大学后,将研究重心从理论转移到了实验领域,1970年代末成为分子射线取向附生研究领域的先驱。他先是制造和研究了新的合成材料,如磷化镓(GaP)和硅基层上的砷化镓,1985年后又将注意力集中到合成材料砷化铟(InAs),锑化镓(GaSb)和锑化铝(AlSb),并将基础研究和未来元件开放相结合,其中一项重要的研究课题是超导半导体混合结构,砷化铟-锑化铝材料由超导铌电极连结,可以促使半导体内的超导。另一个研究方向是强电场下半导体内电子的传输赫伯特-克勒默简介,电子在偏能带中振荡,这种结构适合于做振荡器,通常称为Bloch振荡器,可以达到太赫兹(THz)级的频率。

他和查尔斯·基泰尔(CharlesKittel)合著的统计力学教科书ThermalPhysics(ISBN0716710889)在1980年出版至今仍广为全球许多大学使用。

赫伯特·克勒默

克勒默的研究领域在当时都不是热门的,但却在几年后显现出其重要性 。他在1950年代中期指出使用半导体异质结构能够大大提高各种半导体元件的性能,并提出了可以实现秭赫(GHz)级频率的异质结二极管的概念。1963年又提出了双异质结构激光的概念,这是半导体激光的基础和核心技术。这两个概念远远超出了当时的研究水平,直至1980年代取向附生技术发展后才得以大量应用,并成为主流。克勒默2000年所获得的诺贝尔物理学奖可以追溯到这些早期的论文,它们使得1980年代成为了“异质结构的时代”,异质结构继续主导着化合物半导体,这不仅仅包括激光和发光二极管,还包括集成电路,并且威胁到了硅制集成电路技术的主流地位。

克勒默来到圣塔芭芭拉加利福尼亚大学后,将研究重心从理论转移到了实验领域,1970年代末成为分子射线取向附生研究领域的先驱。他先是制造和研究了新的合成材料,如磷化镓(GaP)和硅基层上的砷化镓,1985年后又将注意力集中到合成材料砷化铟(InAs), 锑化镓(GaSb)和锑化铝(AlSb),并将基础研究和未来元件开放相结合,其中一项重要的研究课题是超导半导体混合结构,砷化铟-锑化铝材料由超导铌电极连结,可以促使半导体内的超导。另一个研究方向是强电场下半导体内电子的传输,电子在偏能带中振荡,这种结构适合于做振荡器,通常称为Bloch振荡器,可以达到涧赫(THz)级的频率。

1990年代末起,克勒默又转向纯理论工作,继续早期的研究,也开创了一些新的研究领域,如光子晶体中的电磁波传播,纳米结构物理学等。

赫伯特·克勒默和若雷斯·阿尔费罗夫因将半导体异质结构发展应用于高速光电子元件中,与发明集成电路的杰克·基尔比分享了2000年诺贝尔物理学奖。

赫伯特·克勒默

1973年,电气电子工程师协会(IEEE),J.J.埃贝斯奖(J.J. Ebers Award)

1982年,国际砷化镓及相关化合物研讨会,海因里希-韦尔克-奖章(Heinrich-Welker-Medaille)

1983年,电气电子工程师协会电子器件学会,国家讲师奖(National Lecturer)

1986年,电气电子工程师协会,杰克·默尔敦奖(Jack Morton Award)

1994年,亚历山大-冯-洪堡研究奖(Alexander-von-Humboldt-Forschungspreis)

2000年,诺贝尔物理学奖

赫伯特·克勒默

1963年,他提出了双异质结构激光的概念,是这一领域的先驱之一 ,他所提出的概念远远超出了当时在半导体领域的研究水平。八十年代时,这种理念和相应的技术才被大量应用开来。在到美国加利福尼亚大学从事实验研究之后,他研究出多种实用半导体技术,涵盖了高性能设备、材料研究、固态物理等诸多新兴领域。出色的研究成果曾为他赢得了多项国内外大奖。

瑞典皇家科学院10日宣布,俄罗斯科学家泽罗斯·阿尔费罗夫、美国科学家赫伯特·克勒默和杰克·基尔比,因在“信息技术方面的基础性工作”而获2000年诺贝尔物理学奖。

瑞典皇家科学院发布的新闻公报说,三位科学家“通过发明快速晶体管、激光二极管和集成电路”,为现代信息技术奠定了坚实基础。其中,阿尔费罗夫和克勒默将分享2000年一半的诺贝尔物理学奖奖金,以表彰他们在半导体异质结构研究方面的开创性工作。基尔比则因在发明集成电路中所作的贡献,而获得了总额为900万瑞典克朗(约合100万美元)的奖金的另一半。

现代信息技术近几十年深刻改变了人类社会,它的发展必须具备两个简单但又是基本的先决条件:一是快速,即短时间里传输大量信息;二是体积小,携带起来方便,在任何场合都能使用。三位科学家的成果满足了这两个要求。

阿尔费罗夫与克勒默为满足上述第一个先决条件作出了重要贡献。他们发明的半导体异质结构技术,已广泛应用于制造高速光电子和微电子元件。所谓异质结构半导体,主要由很多不同带隙的薄层组成。通信卫星和移动电话基站等都采用了异质结构技术制造的快速晶体管。利用异质结构技术制造的激光二极管,也使光纤电缆传输因特网信息得以实现。半导体异质结构技术还可用于制造发光二极管,汽车刹车灯和交通灯等都用到发光二极管,常用的电灯在未来也有可能被发光二极管取而代之。

引言:梁骏吾院士逝世,老先生为我国半导体材料领域做出了最大的贡献就是为我国研究出如何制备硅单晶体这一个重要的难题,因为在当时,在国外已经做出世界上第一块集成电路的时候,半导体技术在国外已经非常领先了,并且他们在这个领域也发明了很多的创新技术,但是新中国还没有掌握集成电路所需要的最关键的一个材料,那就是硅单晶体。

于是在1960年,老先生选择从苏联回到祖国,当时我国正处于半导体刚成立的时候,于是老先生带领着他自己的团队日夜攻坚,寻求能够解决中国所缺少的硅单晶体材料的这一个重要的难题,老先生在没有任何基础之上攻坚克难,最终为中国研究出了这一个关键材料,从而对中国半导体事业和半导体的领域做出了巨大大的推进。

老先生不仅仅为中国解决了硅单晶体这一个重要的难题,而且在集成电路以及其他的半导体领域方面都做出了很大的创新和改进。因为自然界中的硅还有很多杂志,所以说老先生将硅进行进一步提纯重安,保证了拥有较高的电阻率。同时老先生也在我国许创新领域和科研领域上面都做出了很大的贡献,不仅仅对于我们的祖国的科研具有很大的推进作用,而且对于我国的许多创新性领域也提出了许多自己的想法,他还培养了许多优秀的学生,给中国这个半导体领域创造了更多的创新型人才和研究型人才,所以说老先生对于中国半导体料的贡献和这个领域上面的促进是前所未有的。

让我们一起为老先生致敬,一起为老先生送行,相信老先生在江后来看到我们祖国日益昌盛,日益繁荣的时候,一定会更加安心。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8680988.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存