关于电子电工技术中,半导体的本征激发,空穴怎么运动的?

关于电子电工技术中,半导体的本征激发,空穴怎么运动的?,第1张

空穴:电子挣脱共价键的束缚,成为自由电子后留下的空位。

我做一个比喻:你可以把共价键想象成一个教室的桌椅和学生(每个位置都有学生),此时是一个稳定状态(没有运动的学生,也没有空桌椅,相当于不导电)。突然有一个学生离开了位置(把学生看做自由电子,此时有自由电子),这时候就有一个位置空出来(空位置相当于空穴)。为了把这个空位置填上,空位后面的人自动向前作(其实是后面的人前移,但是从前面观察,好像空位后移的效果),如此这样类推,就形成了空位移动。

空穴移动,是共价键中束缚电子(离开后面的座位,坐到前面空椅子的人)移动的后果。

不管是N型还是P型还是本征半导体,稳定后其中的空穴和电子个数是相等的。        空穴的概念可以理解为30个人坐30张凳子,受外界干扰后,老师让他们随机换位子,最后有人站着必然有位置空着。

引入P型N型只是加入相同的位置与人或减去相同的位置和人,调位置变得复杂或者简单一点。硅在稳定的时候可以理解为不调位置,所以没有空位子即空穴,只是外加的杂质引起的反复抢位置,

对于单个元素,它们空间排列并不是都像硅那么整齐的,晶体硼的结构单元是若干个正三角形的多面体,每个单元中有12个硼原子,每个硼原子与另外5个硼原子相连。 是原子晶体。而有些原子由于条件原因时不能单独存在的

晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有着重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有着显著的差别。

非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个硅原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,分别称为施主和受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高于施主能级,称为正相关能。因此在一般情况下,悬挂键保持只有一个电子占据的中性状态,在实验中观察到悬挂键上未配对电子的自旋共振。1975年斯皮尔等人利用硅烷辉光放电的方法,首先实现非晶硅的掺杂效应,就是因为用这种办法制备的非晶硅中含有大量的氢,氢与悬挂键结合大大减少了缺陷态的数目。这些缺陷同时是有效的复合中心。为了提高非平衡载流子的寿命,也必须降低缺陷态密度。因此,控制非晶硅中的缺陷,成为目前材料制备中的关键问题之一。

硫系玻璃中缺陷的形式不是简单的悬挂键,而是换价对。最初,人们发现硫系玻璃与非晶硅不同,观察不到缺陷态上电子的自旋共振,针对这表面上的反常现象,莫脱等人根据安德森的负相关能的设想,提出了MDS模型。当缺陷态上占据两个电子时,会引起点阵的畸变,若由于畸变降低的能量超过电子间库仑排斥作用能,则表现出有负的相关能,这就意味着受主能级位于施主能级之下。用 D、D、D 分别代表缺陷上不占有、占有一个、占有两个电子的状态,负相关能意味着:

2D ─→ D+D

是放热的。因而缺陷主要以D、D形式存在,不存在未配对电子,所以没有电子的自旋共振。不少人对D、D、D缺陷的结构作了分析。以非晶态硒为例,硒有六个价电子,可以形成两个共价键,通常呈链状结构,另外有两个未成键的 p电子称为孤对电子。在链的端点处相当于有一个中性悬挂键,这个悬挂键很可能发生畸变,与邻近的孤对电子成键并放出一个电子(形成D),放出的电子与另一悬挂键结合成一对孤对电子(形成D),如图5所示。因此又称这种D、D为换价对。由于库仑吸引作用,使得D、D通常是成对地紧密靠在一起,形成紧密换价对。硫系玻璃中成键方式只要有很小变化就可以形成一组紧密换价对,如图6所示,它只需很小的能量,有自增强效应,因而这种缺陷的浓度通常是很高的。利用换价对模型可以解释硫属非晶态半导体的光致发光光谱、光致电子自旋共振等一系列实验现象。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8743753.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-20
下一篇 2023-04-20

发表评论

登录后才能评论

评论列表(0条)

保存