铁电性的性能特征

铁电性的性能特征,第1张

电滞回线(ferroelectric hysteresis loop)是铁电畴在外电场作用下运动的宏观描述。铁电体极化随着电场的变化而变化,极化强度与外加电场之间呈非线性关系。

当电场施加于晶体时,沿电场方向的电畴扩展,晶体极化程度变大;而与电场反平行方向的电畴则变小。这样,极化强度随外电场增加而增加,如图中OA段曲线。

在电场很弱时,极化线性地依赖于电场,此时可逆的畴壁移动占主导地位。当电场增强时,新畴成核,畴壁运动成为不可逆的,极化随电场地增加比线性快。

当电场强度继续增大,达到相应于B点的值时,使晶体电畴方向都趋于电场方向,类似于单畴,极化强度趋于饱和。由于感应极化的增加,总极化仍然有所增加(BC段)。

此时再增加电场,P与E成线性关系(类似于单个d性偶极子),将这线性部分外推至E=0时的情况,此时在纵轴上的截距称为饱和极化强度或自发极化强度Ps。实际上Ps为原来每个单畴的自发极化强度,是对每个单畴而言的。

如果电场自图中C处开始降低,晶体的极化强度亦随之减小。在零电场处,仍存在极化,称为剩余极化强度Pr(remanent polarization)。这是因为电场减低时,部分电畴由于晶体内应力的作用偏离了极化方向。但当E=0时,大部分电畴仍停留在极化方向,因而宏观上还有剩余极化强度。由此,剩余极化强度Pr是对整个晶体而言。

当反向电场继续增大到某一值时,剩余极化才全部消失,此时电场强度称为矫顽场Ec(coercivefield)。反向电场超过Ec,极化强度才开始反向。如果它大于晶体的击穿场强,那么在极化强度反向前,晶体就被击穿,则不能说该晶体具有铁电性。

以上过程使电场在正负饱和值之间循环一周,极化与电场地关系如曲线所示,此曲线称为电滞回线。

由于极化的非线性,铁电体的介电常数不是常数。一般以OA在原点的斜率来代表介电常数。所以在测量介电常数时,所加的外电场(测试电场)应很小。

另外,有一类物体在转变温度以下,邻近的晶胞彼此沿反平行方向自发极化。这类晶体叫反铁电体。反铁电体一般宏观无剩余极化强度,但在很强的外电场作用下,可以诱导成铁电相,其P-E曲线呈双电滞回线。反铁电体也具有临界温度-反铁电居里温度。在居里温度附近,也具有介电反常特性。

影响因素

a)温度

极化温度的高低影响到电畴运动和转向的难易。矫顽场强和饱和场强随温度升高而降低。极化温度较高,可以在较低的极化电压下达到同样的效果,其电滞回线形状比较瘦长。

环境温度对材料的晶体结构也有影响,可使内部自发极化发生改变,尤其是在相界处(晶型转变温度点)更为显著。若温度超过居里温度,铁电性消失。

b)极化时间和极化电压

电畴转向需要一定的时间,时间增长,极化充分,电畴定向排列更加完全,同时,也具有较高的剩余极化强度。

极化电压加大,电畴转向程度高,剩余极化变大。

c)晶体结构

同一种材料,单晶体和多晶体的电滞回线是不同的。如单晶体的电滞回线很接近于矩形,Ps和Pr很接近,而且Pr较高;陶瓷的电滞回线中Ps与Pr相差较多,表明陶瓷多晶体不易成为单畴,即不易定向排列。 铁电体具有以下介电特性:非线性、高介电常数 。

(1)非线性

铁电体的非线性是指介电常数随外加电场强度非线性地变化。从电滞回线也可看出这种非线性关系。在工程中,常采用交流电场强度Emax和非线性系数N~来表示材料的非线性。

非线性的影响因素主要是材料结构。可以用电畴的观点来分析非线性。当所有电畴都沿外电场方向排列定向时,极化达到最大值。在低电场强度作用下,电畴转向主要取决于90°和180°畴壁的位移。

(2)高介电常数

钙钛矿型铁电体具有很高的介电常数。纯钛酸钡陶瓷的介电常数在室温时约1400;而在居里点(20℃)附近,介电常数增加很快,可高达6000~10000。室温下εr随温度变化比较平坦,这可以用来制造小体积大容量的陶瓷电容器。为了提高室温下材料的介电常数,可添加其它钙钛矿型铁电体,形成固溶体。在实际制造中需要解决调整居里点和居里点处介电常数的峰值问题,这就是所谓“移峰效应”和“压峰效应”。 陶瓷材料晶界特性的重要性不亚于晶粒本身特性的。例如BaTiO3铁电材料,由于晶界效应,可以表现出各种不同的半导体特性。

在高纯度BaTiO3原料中添加微量稀土元素(例如La),用普通陶瓷工艺烧成,可得到室温下体电阻率为10~103Ω·cm的半导体陶瓷。这是因为象La3+这样的三价离子,占据晶格中Ba2+的位置。每添加一个La3+时离子便多余了一价正电荷,为了保持电中性,Ti4+俘获一个电子。这个电子只处于半束缚状态,容易激发,参与导电,因而陶瓷具有n型半导体的性质。

另一类型的BaTiO3半导体陶瓷不用添加稀土离子,只把这种陶瓷放在真空中或还原气氛中加热,使之“失氧”,材料也会具有弱n型半导体特性。

铁电体是具有自发极化的性质,其极化方向在电场作用下可以反转的材料,1975年Meyer等人首次发现并证明,由手性分子组成的倾斜近晶相具有铁电性。铁电体是这样的晶体,其中存在自发极化,且自发极化有两个或多个可能的取向,在电场作用下,其取向可以改变。故自发极化是铁电体物理学研究的核心问题。极化是一种极性矢量,自发极化的出现在晶体中造成了一个特殊方向。每个晶胞中原子的构型使正负电荷重心沿核方向发生相对位移,形成电偶极矩。整个晶体在该方向上呈现极性,一端为正,一端为负。因此,这个方向与晶体的其它任何方向都不是对称等效的,称为特殊极性方向。在晶体学32个点群中,只有10个具有特殊极性方向,这十个点群称为极性点群。晶体在整体上呈现自发极化,意即在其正负端分别有一层正的和负的电荷。束缚电荷产生的电场在晶体内部与极化反向,称为退极化场,它使静电能升高。在受机械约束时,伴随着自发极化的应变还将使应变能增加。所以均匀极化的状态是不稳定的,晶体将分成若干个小区域,每个小区域内部电偶极子沿同一方向,但各个小区域中电偶极子方向不同。这些小区域称为电畴或畴。畴之间的界叫畴壁。畴的出现使晶体的静电能和应变能降低,但畴壁的存在引入了畴壁能。总自由能取极小值的条件决定了电畴的稳定构型。铁电体的极化随电场的变化而变化,极化强度与外加电场关系。当电场较强时,极化与电场之间呈非线性关系,在电场作用下,新畴成核长大,畴壁移动,导致极化转向。在电场很弱时,极化线性地依赖于电场,此时可逆的畴壁移动占主导地位。当电场增强时,新畴成核,畴壁运动成为不可逆,极化随电场的增加比线性段块。当电场达到点时,晶体成为单畴,极化趋于饱和。当电场进一步增强,由于感应极化的增加,总极化仍然增大段。如果趋于饱和后电场减小,极化将沿着曲线减小。当电场达到零时,晶体在宏观上仍为极化态。线段所示的值即称为剩余极化。将线段延长与轴交于,线段即是自发极化。当电场反向,极化沿着曲线移动,直至达到另一极化最大值。EH代表的电场是使极化等于零的电场,称为矫顽场。晶体的铁电性通常只存在一定的温度范围。当温度超过某一值时,自发极化消失,铁电体变成顺电体。铁电相与顺电相之间的转变称为铁电相变,该温度称为居里温度或者居里点。晶体结构是铁电体物理学的基础。铁电体按晶体结构可以大致分为以下几类:1、含氧八面体的铁电体,2、含氢键的铁电体,3、含氟八面体的铁电体,4、含其它离子基团的铁电体,5、铁电聚合物和铁电液晶。研究进展一般认为,铁电体的研究始于年,当年法国人发现了罗息盐酒石酸钾钠,场·的特异的介电性能,导致了“铁电性”概念的出现。迄今铁电研究可大体分为四个阶段’。第一阶段是1920-1939年,在这一阶段中发现了两种铁电结构,即罗息盐和系列。第二阶段是1940-1958年,铁电维象理论开始建立,并趋于成熟。第三阶段是年到年代,这是铁电软模理论出现和基本完善的时期,称为软模阶段。第四阶段是80年代至今,主要研究各种非均匀系统。到目前为止,己发现的铁电晶体包括多晶体有一千多种。从物理学的角度来看,对铁电研究起了最重要作用的有三种理论,即德文希尔但等的热力学理论,的模型理论,。父和的软模理论。近年来,铁电体的研究取得不少新的进展,其中最重要的有以下几个方面。1、第一性原理的计算。现代能带结构方法和高速计算机的反展使得对铁电性起因的研究变为可能。通过第一性原理的计算,对,,仇和等铁电体,得出了电子密度分布,软模位移和自发极化等重要结果,对阐明铁电性的微观机制有重要作用。2、尺寸效应的研究。随着铁电薄膜和铁电超微粉的发展,铁电尺寸效应成为一个迫切需要研究的实际问题。近年来,人们从理论上预言了自发极化、相变温度和介电极化率等随尺寸变化的规律,并计算了典型铁电体的铁电临界尺寸。这些结果不但对集成铁电器件和精细复合材料的设计有指导作用,而且是铁电理论在有限尺寸条件下的发展。3、铁电液晶和铁电聚合物的基础和应用研究。1975年MEYER发现,由手性分子组成的倾斜的层状相‘相液晶具有铁电性。在性能方面,铁电液晶在电光显示和非线性光学方面很有吸引力。电光显示基于极化反转,其响应速度比普通丝状液晶快几个数量级。非线性光学方面,其二次谐波发生效率已不低于常用的无机非线性光学晶体。聚合物的铁电性在年代末期得到确证。虽然的热电性和压电性早已被发现,但直到年代末才得到论证,并且人们发现了一些新的铁电聚合物。聚合物组分繁多,结构多样化,预期从中可发掘出更多的铁电体,从而扩展铁电体物理学的研究领域,并开发新的应用。4、集成铁电体的研究。铁电薄膜与半导体的集成称为集成铁电体洋,近年来广泛开展了此类材料的研究。铁电存贮器的基本形式是铁电随机存取存贮器。早期以为主要研究对象,直至年实现了的商业化。与五六十年代相比,当前的材料和技术解决了几个重要问题。一是采用薄膜,极化反转电压易于降低,可以和标准的硅或电路集成,二是在提高电滞回线矩形度的同时,在电路设计上采取措施,防止误写误读,三是疲劳特性大有改善,已制出反转次数达仍不显示任何疲劳的铁电薄膜。在存贮器上的重大应用己逐渐在铁电薄膜上实现。与此同时,铁电薄膜的应用也不局限于,还有铁电场效应晶体管、铁电动态随机存取存贮器等。除存贮器外,集成铁电体还可用于红外探测与成像器件,超声与声表面波器件以及光电子器件等。可以看出,集成薄膜器件的应用前景不可估量。在铁电物理学内,当前的研究方向主要有两个一是铁电体的低维特性,二是铁电体的调制结构。铁电体低维特性的研究是应对薄膜铁电元件的要求,只有在薄膜等低维系统中,尺寸效应才变得不可忽略脚一。极化在表面处的不均匀分布将产生退极化场,对整个系统的极化状态产生影响。表面区域内偶极相互作用与体内不同,将导致居里温度随膜厚而变化。薄膜中还不可避免地有界面效应,薄膜厚度变化时,矫顽场、电容率和自发极化都随之变化,需要探明其变化规律并加以解释。铁电超微粉的研究也逐渐升温。在这种三维尺寸都有限的系统中,块体材料的导致铁电相变的布里渊区中心振模可能无法维持,也许全部声子色散关系都要改变。库仑作用将随尺寸减小而减弱,当它不能平衡短程力的作用时,铁电有序将不能建立。来自www.fundfund.cn 详文参考:http://www.fundfund.cn/news/20100321/201032163067.htm


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8900624.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存