谁能介绍半导体二极管参数符号 CT- Cj的意思?

谁能介绍半导体二极管参数符号 CT- Cj的意思?,第1张

半导体二极管参数符号

CT-势垒电容

Cj-结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容

Cjv-偏压结电容

Co-零偏压电容

Cjo-零偏压结电容

Cjo/Cjn-结电容变化

Cs-管壳电容或封装电容

Ct-总电容

CTV-电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比

CTC-电容温度系数

Cvn-标称电容

IF-正向直流电流(正向测试电流)。

锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流

IF(AV)-正向平均电流

IFM(IM)-正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。

IH-恒定电流、维持电流。

Ii-发光二极管起辉电流

IFRM-正向重复峰值电流

IFSM-正向不重复峰值电流(浪涌电流)

Io-整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流

IF(ov)-正向过载电流

IL-光电流或稳流二极管极限电流

ID-暗电流

IB2-单结晶体管中的基极调制电流

IEM-发射极峰值电流

IEB10-双基极单结晶体管中发射极与第一基极间反向电流

IEB20-双基极单结晶体管中发射极向电流

ICM-最大输出平均电流

IFMP-正向脉冲电流

IP-峰点电流

IV-谷点电流

IGT-晶闸管控制极触发电流

IGD-晶闸管控制极不触发电流

IGFM-控制极正向峰值电流

IR(AV)-反向平均电流

IR(In)-反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电 流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。

IRM-反向峰值电流

IRR-晶闸管反向重复平均电流

IDR-晶闸管断态平均重复电流

IRRM-反向重复峰值电流

IRSM-反向不重复峰值电流(反向浪涌电流)

Irp-反向恢复电流

Iz-稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流

Izk-稳压管膝点电流

IOM-最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流

IZSM-稳压二极管浪涌电流

IZM-最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流

iF-正向总瞬时电流

iR-反向总瞬时电流

ir-反向恢复电流

Iop-工作电流

Is-稳流二极管稳定电流

f-频率

n-电容变化指数;电容比

Q-优值(品质因素)

δvz-稳压管电压漂移

di/dt-通态电流临界上升率

dv/dt-通态电压临界上升率

PB-承受脉冲烧毁功率

PFT(AV)-正向导通平均耗散功率

PFTM-正向峰值耗散功率

PFT-正向导通总瞬时耗散功率

Pd-耗散功率

PG-门极平均功率

PGM-门极峰值功率

PC-控制极平均功率或集电极耗散功率

Pi-输入功率

PK-最大开关功率

PM-额定功率。硅二极管结温不高于150度所能承受的最大功率

PMP-最大漏过脉冲功率

PMS-最大承受脉冲功率

Po-输出功率

PR-反向浪涌功率

Ptot-总耗散功率

Pomax-最大输出功率

Psc-连续输出功率

PSM-不重复浪涌功率

PZM-最大耗散功率。在给定使用条件下,稳压二极管允许承受的最大功率

RF(r)-正向微分电阻。在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻

RBB-双基极晶体管的基极间电阻

RE-射频电阻

RL-负载电阻

Rs(rs)-串联电阻

Rth-热阻

R(th)ja-结到环境的热阻

Rz(ru)-动态电阻

R(th)jc-结到壳的热阻

rδ-衰减电阻

r(th)-瞬态电阻

Ta-环境温度

Tc-壳温

td-延迟时间

tf-下降时间

tfr-正向恢复时间

tg-电路换向关断时间

tgt-门极控制极开通时间

Tj-结温

Tjm-最高结温

ton-开通时间

toff-关断时间

tr-上升时间

trr-反向恢复时间

ts-存储时间

tstg-温度补偿二极管的贮成温度

a-温度系数

λp-发光峰值波长

△λ-光谱半宽度

η-单结晶体管分压比或效率

VB-反向峰值击穿电压

Vc-整流输入电压

VB2B1-基极间电压

VBE10-发射极与第一基极反向电压

VEB-饱和压降

VFM-最大正向压降(正向峰值电压)

VF-正向压降(正向直流电压)

△VF-正向压降差

VDRM-断态重复峰值电压

VGT-门极触发电压

VGD-门极不触发电压

VGFM-门极正向峰值电压

VGRM-门极反向峰值电压

VF(AV)-正向平均电压

Vo-交流输入电压

VOM-最大输出平均电压

Vop-工作电压

Vn-中心电压

Vp-峰点电压

VR-反向工作电压(反向直流电压)

VRM-反向峰值电压(最高测试电压)

V(BR)-击穿电压

Vth-阀电压(门限电压)

VRRM-反向重复峰值电压(反向浪涌电压)

VRWM-反向工作峰值电压

V v-谷点电压

Vz-稳定电压

△Vz-稳压范围电压增量

Vs-通向电压(信号电压)或稳流管稳定电流电压

av-电压温度系数

Vk-膝点电压(稳流二极管)

VL-极限电压

半导体芯片测试贯穿芯片设计,晶圆制造以及封装和测试的整个过程 。它在降低半导体芯片和分立器件的成本,提高产品良率以及改善制造工艺方面起着关键作用。从狭义上讲,对半导体芯片测试的理解集中在封装和测试过程中。实际上,半导体芯片测试贯穿整个生产过程, 从半导体芯片设计开始,继续进行半导体芯片制造,最后进行封装半导体芯片的性能测试 。测试电路时,通过将芯片连接到 半导体芯片测试机,向芯片施加信号,分析芯片的输出信号,并将其与期望值进行比较,然后获得有关芯片,半导体性能的指标芯片分选机和探针台将芯片连接到测试仪以实现自动化测试 。下游主要包括芯片设计公司,晶片制造公司以及封装和测试厂商。

晶圆制造过程测试也称为中级测试。它用于 识别晶片上的工作芯片性能,以确保只有能够实现正常数据通信并通过电气参数和逻辑功能测试的芯片才能进入封装过程,以节省不必要的时间,同时,它可以为晶圆厂提供良率数据批量生产半导体芯片,及时发现半导体芯片技术的缺陷 。此阶段的半导体芯片测试可以在晶圆厂中进行,也可以送到工厂附近的代工厂进行测试,这一环节主要使用半导体芯片测试机和探针台。半导体芯片探针台是高精度设备,其技术障碍主要体现在关键参数上,例如系统的精确定位,微米级运动和高精度通信。

最终测试用于确保成品半导体芯片在出厂前能够满足设计规范要求的性能和功能。它主要使用 半导体芯片测试仪和分选机 。分选机将被测试的芯片分批提供给测试仪器。在一定的测试环境下,将半导体芯片测试零件的引脚与测试机的电信号相连,半导体芯片测试机的吞吐量对于提高自动化程度和测试起着重要的作用。 半导体芯片封装形式的逐渐多样化将对半导体芯片分类器在各种封装形式下快速切换测试模式的能力提出更高的要求

长川 科技 在成立之初,就以半导体芯片模拟测试仪和分选机为起点,走了自主研发之路 。经过多年的精耕细作,实现了产品从零开始的不断升级,深化了产品布局。半导体芯片测试机和分选机的核心性能指标可与国际先进水平相提并论,同时价格低于竞争产品,具有成本效益优势。

经过一系列的研发,公司推出了第一代半导体芯片模拟测试仪CTA8200,以满足功率放大器,运算放大器和电机驱动模拟半导体芯片的电气性能参数测试需求。随后公司启动了第二代模拟/数字混合半导体芯片测试机的研发,并推出了CTA8280型号,从而缩短了信号源响应时间,提高了数据转换精度,减少了线路干扰,改善了测试数据稳定性和测试效率等方面已得到明显改善。先后推出了CTT3600,CTT3280和CTT3320三种型号。其中,CTT3320系统是中国具有最强并行测试能力的半导体芯片功率设备测试系统,具有32位并行测试能力。

公司的分选机主要是半导体芯片重力分选机和平移分选机。半导体芯片重力分选机主要用于传统包装形式的分选。随着半导体芯片包装从插入生产到贴片生产的逐步过渡,该公司成功开发出了具有视觉检查功能的半导体芯片检查和收集一体机。非常适合后续过程中自动放置的生产模式。随着QFP,QFN和BGA先进封装的兴起,对半导体芯片分选机的测试速度,测试压力,精度,多功能性和适应性提出了更高的要求。该公司已经开发了相关技术,以实现PLCC,BGA,LGA和其他半导体芯片封装形式,以满足处理器,SOC和MCU等高端半导体芯片的测试要求。

全球测试设备市场高度集中。 Tokyo Precision和Tokyo Electronics占据了探测台市场80%以上的份额;在分选机市场中,Advan,Corsue和Epson这三个公司的市场份额已超过60%。Advan和泰瑞达以87%的市场份额几乎垄断了测试机市场。 泰瑞达在SoC测试领域占据绝对领先地位,市场份额接近57%。Advan的市场份额为40%的市场份额已成为内存测试的领导者。模拟测试的技术障碍相对较低。我国长川 科技 和北京华峰在模拟/数字-模拟混合测试领域做出了努力,并在国内替代方面取得了一定进展。 长川 科技 的第三代半导体芯片模拟测试系统拥有高端设备,可以实现替代国外高端机器。北京华峰自主研发的半导体芯片模拟混合信号自动测试系统STS 8200成功打破了国外垄断,华峰已进入意法半导体,日月光等国际厂商的供应商体系。与先前的晶片制造设备相比,封装和测试设备的技术难度较小,并且定位的难度较低。另外,大陆包装测试公司在世界上具有很强的竞争力,国内包装测试设备公司可以切入下游客户,为实现国产替代创造良好条件。

2020年前三季度,公司实现营业收入5亿元,同比增长150%,归属于母公司所有者的净利润为0.35亿元,同比增长2584%;其中第三季度营业收入为1.82亿元,同比增长82%,归属于母公司所有者的净利润为906万元,同比增长3598%。 虽然营收与净利润同比增长,但仍有很大不足,仍需改善。

A股上市公司半导体芯片测试设备黑马股长川 科技 处于中短期上升格局,主力机构阶段性控盘结构,据大数据统计,主力筹码约为40%,主力控盘比率约为43%, 趋势研判与多空研判方面,可以参考13日均线及21日均线,均线组排列关系影响中期格局,13日均线作为中短期多空参考,21日均线作为中期参考。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8938251.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存