脉冲激光干涉改变脉冲频率的原理

脉冲激光干涉改变脉冲频率的原理,第1张

激光脉冲原理与调Q原理激光脉冲原理与调Q原理按照输出激光的时间特性,激光器可以分为连续激光器和脉冲激光器,脉冲激光的脉宽主要是纳秒,微秒和飞秒。连续激光器连续不断地输出激光,输出功率一般都比较低,适合于要求激光连续工作(激光通信,激光手术等)的场合;以连续光源激励的固体激光器,以连续电激励方式工作的气体激光器及半导体激光器,均属于连续激光器。脉冲激光器:是指每间隔一定时间才输出一次激光的激光器,一般具有较高的峰值功率,适合于激光打标,切割,测距等应用。常见的脉冲激光器包括:固体激光器中的钇铝石榴石(YAG)激光器,红宝石激光器,蓝宝石激光器,钕玻璃激光器等,还有氮分子激光器,准分子激光器等。脉冲激光器的关键参数:平均功率:表征在一个完整的周期内(脉冲周期)能量输出的平均速率峰值功率:表征一个脉冲内(脉宽)输出的能量的速率脉冲周期:从一个脉冲开始到下一个脉冲的开始之间的间隔(和重复频率是倒数关系) (重复频率:每秒内输出的脉冲个数)脉宽:一个脉冲的持续时间(例如,一台激光器每秒内输出一个能量为0.5J的激光脉冲,那么它的平均功率就是0.5W;如果相同一台单脉冲能量为0.5J的激光器的脉宽为1微妙,那么它的峰值功率为500000W)脉冲激光器的分类:1.长脉冲激光器:长脉冲激光也被称为准连续激光器,一般产生毫秒ms量级的脉冲,占空比为10%(比较大);脉冲时间通常为1.5—100ms不等,常用的长脉冲激光包括翠绿宝石激光,半导体激光,Nd:YAG激光,染料激光,红宝石激光,超脉冲CO2激光,铒激光等2.巨脉冲激光器(调Q激光器):在激光腔体内人为的加入损耗,使其大于工作物质的增益,这时抑制激光输出。但在泵浦源持续不断的激励下,激光上能级的原子数越来越多,得到了较大的粒子数反转,不断积累能量。在撤除人为加入的损耗情况下,就会在很短的时间内以极快的速度产生脉冲宽度窄,峰值功率高的脉冲激光,通常称为巨脉冲。

调Q:调Q是许多商用激光器产生脉冲激光的主要方式,为研究出真正具有实用价值的激光器,需不断改进其性能,提高效率和功率、压缩脉冲宽度、改变输出频率。为此,发明了多种激光调制技术、传输技术、调Q技术、锁模技术、选模技术、稳频技术、频率变换技术等。实现调Q技术的方法:主动调Q方法:电光调Q,声光调Q被动调Q方法:(可饱和吸收)染料调Q,色心晶体调Q(Cr4:YAG晶体可饱和吸收),转镜调QQ值:是评定激光器中光学谐振腔质量好坏的指标,是一个品质因数;Q=2π×谐振腔内储存的能量/每震荡周期损耗的能量;Q值愈高,所需要的泵浦阈值就越低,亦即激光愈容易起振调节Q值的途径:一般采取改变腔内损耗的办法来调节腔内的Q值调Q的方法是在共振腔内引入一个快速光开关—Q开关:“关闭”或”低Q”状态:(腔内不能形成振荡而粒子数反转不断得到增强)“接通”或”高Q”状态:(在腔内形成瞬时的强激光振荡)可饱和吸收调Q:某些染料材质具有突变的吸收饱和特点,当波长处于其吸收峰附近入射光信号较弱时,染料媒质对入射光呈现出非常明显的吸收趋势(相当于处于”关闭”状态);当入射光信号增强到一定程度时,染料媒质对入射光突然呈现出明显的吸收饱和趋势(接通状态)。光泵脉冲开始后的一段时间,工作物质的初始受激发射信号较弱,染料开关处于关闭状态;当工作物质粒子数反转程度达到最大,受激发射光强增大到足以使染料开关处于吸收饱和状态,从而在腔内接通振荡回路并形成调Q激光输出。目前,商业化的可饱和吸收体已经发展得非常成熟。锁模:激光锁模的目的是压缩脉冲宽度,提高峰值功率。Q开关激光器一般脉宽达10^-8s-10^-9s量级,如果再压缩脉宽,Q开关激光器已经无能为力,但有很多实际应用需要更窄的脉冲。目前,获取超快激光一般都采用锁模的方法,锁模技术可将脉冲压缩到10^-11s-10^-14s量级。(ps或fs量级)激光器的模式分为纵模和横模,锁模也分为锁纵模、锁横模、锁纵横模三种。

锁纵模:在两反射镜间沿轴进行的光束,由于腔长L与光波波长的比是一个很大的数目,所以必然有数不清不同波长的光波,能符合加强反射的条件2nL=kλ,即2nL=k_1 λ_1=k_2 λ_2=k_3 λ_3=…,k_i(正整数)是纵模模数。例如:L=800nm, n=1,则k=1时,对应λ_1=1600nm;k=2时,λ_2=800nm;k=3时,λ_3=533nm,使各纵模在时间上同步,频率间隔也保持一定。

5.9

百度文库VIP限时优惠现在开通,立享6亿+VIP内容

立即获取

激光脉冲原理与调Q原理

激光脉冲原理与调Q原理

激光脉冲原理与调Q原理

按照输出激光的时间特性,激光器可以分为连续激光器和脉冲激光器,脉冲激光的脉宽主要是纳秒,微秒和飞秒。

连续激光器连续不断地输出激光,输出功率一般都比较低,适合于要求激光连续工作(激光通信,激光手术等)的场合;以连续光源激励的固体激光器,以连续电激励方式工作的气体激光器及半导体激光器,均属于连续激光器。

第 1 页

脉冲激光器:是指每间隔一定时间才输出一次激光的激光器,一般具有较高的峰值功率,适合于激光打标,切割,测距等应用。常见的脉冲激光器包括:固体激光器中的钇铝石榴石(YAG)激光器,红宝石激光器,蓝宝石激光器,钕玻璃激光器等,还有氮分子激光器,准分子激光器等。

第 2 页

脉冲激光器的关键参数:

平均功率:表征在一个完整的周期内(脉冲周期)能量输出的平均速率

峰值功率:表征一个脉冲内(脉宽)输出的能量的速率

脉冲周期:从一个脉冲开始到下一个脉冲的开始之间的间隔(和重复频率是倒数关系) (重复频率:每秒内输出的脉冲个数)

脉宽:一个脉冲的持续时间(例如,一台激光器每秒内输出一个能量为0.5J的激光脉冲,那么它的平均功率就是0.5W;如果相同一台单脉冲能量为0.5J的激光器的脉宽为1微妙,那么它的峰值功率为500000W)

第 3 页

脉冲激光器的分类:

1.长脉冲激光器:

长脉冲激光也被称为准连续激光器,一般产生毫秒ms量级的脉冲,占空比为10%(比较大);脉冲时间通常为1.5—100ms不等,常用的长脉冲激光包括翠绿宝石激光,半导体激光,Nd:YAG激光,染料激光,红宝石激光,超脉冲CO2激光,铒激光等

2.巨脉冲激光器(调Q激光器):

在激光腔体内人为的加入损耗,使其大于工作物质的增益,这时抑制激光输出。但在泵浦源持续不断的激励下,激光上能级的原子数越来越多,得到了较大的粒子数反转,不断积累能量。在撤除人为加入的损耗情况下,就会在很短的时间内以极快的速度产生脉冲宽度窄,峰值功率高的脉冲激光,通常称为巨脉冲。

半导体激光器和固体激光器的区别在于工作物质、价格、激励源不同。

1、工作物质

半导体激光器常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。

固体激光器常用的工作物质,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。

2、价格

半导体激光器价格低。

固体激光器由于工作介质的制备较复杂,所以价格较贵。

3、激励源

半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。

光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励。高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励。

固体激光器以光为激励源。常用的脉冲激励源有充氙闪光灯;连续激励源有氪弧灯、碘钨灯、钾铷灯等。在小型长寿命激光器中,可用半导体发光二极管或太阳光作激励源。一些新的固体激光器也有采用激光激励的。

参考资料来源:百度百科-半导体激光器

参考资料来源:百度百科-固体激光器

固态物质中,允许大量电子自由自在地在它里面流动的叫导体;只允许极少数电子通过的叫绝缘体;导电性低于导体又高于绝缘体的叫半导体。激光工作物质采用半导体的激光器叫半导体激光器。尽管半导体本身也是一种固体,而且发光机理就本质上讲与固体激光器没有多大差别。但由于半导体物质结构不同,产生激光的受激辐射跃迁的高能级和低能级分别是“导带”和“价带”,辐射是电子与“空穴”复合的结果,具有其特殊性,所以没有将它列入固体激光器。

半导体激光工作物质有几十种,较为成熟的是砷化镓(GaAs)、掺铝砷化镓等。激励方式有光泵浦、电子轰击、电注入式等。

半导体激光器体积小、重量轻、寿命长、结构简单,因此,特别适于在飞机、军舰、车辆和宇宙飞船上使用。有些半导体激光器可以通过外加的电场、磁场、温度、压力等改变激光的波长,即所谓的调谐,可以很方便地对输出光束进行调制;半导体激光器的波长范围为0.32~34微米,较宽广。它能将电能直接转换为激光能,效率已达10%以上。所有这些都使它受到重视,所以发展迅速,目前已广泛应用于激光通信、测距、雷达、模拟、警戒、引燃引爆和自动控制等方面。

半导体激光器最大的缺点是:激光性能受温度影响大,比如砷化镓激光,当温度从绝对温度77°K变到室温时,激光波长从0.84变到0.91微米。另外,效率虽高,但因体积小,总功率并不高,室温下连续输出不过几十毫瓦,脉冲输出只有几瓦到几十瓦。光束的发散角,一般在几度到20度之间,所以在方向性、单色性和相干性等方面较差。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8955661.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存