进展 | 铁电Rashba半导体α-GeTe的非互易电荷输运

进展 | 铁电Rashba半导体α-GeTe的非互易电荷输运,第1张

对于非中心对称体系,在打破时间反演对称性后,其电荷输运性质可表现出非互易性,即单向磁电阻。不同于重金属/铁磁体或者拓扑绝缘体/铁磁体异质结的单向磁电阻,非中心对称体系的非互易输运并不需要磁性界面的参与。近年来,人们在极性半导体、拓扑绝缘体以及界面/表面Rashba等体系中观测到大的非互易电荷输运特性,但是非互易电荷输运特性仅存在于低温,这严重制约了其实际应用。寻找具有室温非互易电荷输运的非中心对称材料,以实现基于非互易响应的新型两端口整流器件是目前国际上研究的热点之一。

中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室成昭华课题组利用分子束外延技术生长出高质量的铁电Rashba半导体薄膜α-GeTe。前期的角分辨光电子能谱(ARPES)测量结果显示,α-GeTe同时具有表面和体Rashba能带结构,其体Rashba系数可至~4.3 eVÅ,对应的自旋劈裂能高达~2300 KBT【Xu Yang et al., Nano Lett . 21, 77–83(2021)】,这为实现室温非互易输运提供了可能性。最近,他们与沙特阿卜杜拉国王 科技 大学张西祥教授课题组合作,基于二次谐波探测技术,在α-GeTe中探测到可达室温的非互易输运行为,发现单向磁电阻与电流和外磁场强度均成正比。进一步研究表明非互易输运系数随着温度的增加而呈现非单调变化,这有别于以往的研究体系中非互易输运系数随着温度的增加而急剧减小的规律。

他们提出了Rashba体系中非线性的自旋流和电荷流的转换模型,很好地解释了实验结果,并确定α-GeTe的非互易电荷输运主要源于其体Rashba能带贡献。该工作不仅为未来整流器件的研究提供了新的思路,并且阐述了Rashba体系中非互易输运的微观机制。

相关工作近期发表于学术期刊《自然通讯》(Nature Communications).

博士后李岩(物理所博士毕业生)、博士生李阳为论文共同第一作者,成昭华研究员和沙特阿卜杜拉国王 科技 大学的张西祥教授为共同通讯作者。艾克斯-马赛大学的Aurélien Manchon教授给予了理论指导。该项研究工作得到了国家重点研发计划、国家自然科学基金和中国科学院前沿科学研究计划的资助以及阿卜杜拉国王 科技 大学的支持。

相关工作链接一

相关工作链接二

调整有机半导体的能量水平,来自德累斯顿大学应用物理与光子材料集成中心(IAPP)和先进电子德累斯顿中心(cfaed)的物理学家,以及来自图宾根、波茨坦和美因茨的研究人员,能够证明有机半导体薄膜中的电子能量是如何被静电力调谐的。由模拟支持的一系列不同实验能够使分子构建块,对载流子施加特定静电力的影响合理化,其研究成果发表在《自然通讯》上。

在基于有机半导体的电子器件如太阳能电池、发光二极管、光电探测器或晶体管中,电子激发态和电荷输运能级是描述其工作原理和性能的重要概念。然而,与传统的无机半导体(如硅芯片)相比,对应的能量学更难以获取和调整,这是一个普遍的挑战。

这既适用于测量,也适用于外部控制的影响。一个调谐旋钮利用了长程库仑相互作用,这在有机材料中得到了增强。本研究探讨了有机材料中电荷输运能级和激子态能量与共混组分和分子取向的关系。

激子是通过光吸收在半导体材料中形成的电子和空穴的束缚对。是由不同有机半导体材料组成的混合物,研究结果表明,通过调整单个分子参数,即分子在pi堆积方向上的四极矩,可以调节有机薄膜的能量学。一个电四极可以由两个正电荷和两个同样强的负电荷组成,它们形成两个相对相等的偶极子。在最简单的情况下,四个电荷交替地排列在正方形的角上。

研究进一步将有机太阳能电池的光电电压或光电流等器件参数与四极矩联系起来。这一结果有助于解释基于新型有机材料的,有机太阳能电池器件效率的最新突破。由于所观察到的静电效应是有机材料的一般性质,包括所谓的“小分子”和聚合物,可以帮助提高所有类型有机器件的性能。有机半导体器件的功能主要取决于分子能量,即电离能和电子亲和能。然而,薄膜的电离能和电子亲和能值对薄膜的形貌和组成非常敏感,因此预测它们具有挑战性。

在对锌酞菁及其氟化衍生物的组合实验和模拟研究中,作为纯膜中分子取向或共混物中混合比的函数电离能变化与沿π-π-的分子四极组分成比例。将这些发现应用于有机太阳能电池,并演示了如何调整静电相互作用,以优化电荷转移态在供体-受体界面和自由电荷载流子产生的离解势垒能量。其他材料的界面能与四极矩之间的相关性得到了证实,这表明界面能与小分子和聚合物之间的关系。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/8999542.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存