固态特斯拉线圈的双谐振

固态特斯拉线圈的双谐振,第1张

在固态特斯拉线圈的基础上,爱好者们发明了双谐振固态特斯拉线圈,即DRSSTC,它的初级线圈串联的电容,而电容和初级线圈构成的LC振荡可以和驱动板输出的信号构成共振,瞬间的电流很大,这使线圈的电弧更加壮观。 假设一个SSTC的频率源的频率是500kHz,这时,我们将一个电容串联到初级线圈上,然后,经过计算,使电容的容量和初级线圈的电感量构成LC振荡,频率也是500kHz。

我们不妨做一个有趣的实验。一个体重很大的人坐在秋千上,开始时,他相对于地面静止。我们假设他在摆动时不会受到任何阻力的影响。这时,一个小孩来推他。我们可以知道,这个小孩的力量很小,每次只能给这个人增加10J的动能。假设这个人有了10J的动能后,向前摆了起来。但是,10J的动能真是太小了,他很快就荡了回来。这个小孩看准时机,在他摆回来后,又刚刚开始向前摆动的时候,推了他一下。这个小孩再次对他做了10J的功,然后他在向前摆动时,就有了20J的动能。如此下去,每一次都会增加10J的动能,一次次下去,这个数字将会是很惊人的。

DRSSTC就是这样。当电流流过初级线圈时,就会给电容充电。这时,电容的两个极板有了一定的电势差。然后由于LC振荡,它立即放出了电流,并很快将电流的方向反转。就在它反转的一瞬间,初级线圈的电流沿着和反转后的电流方向一致的方向流了过来。

如同那个秋千。那个秋千里的人受到一次次恰到好处的力,一次次地摆回来,和小孩推秋千的频率达成了共振。

现在,初级线圈里的电流和电容的电流也达成了共振(不过在电路里,这个状态通常称为谐振),电压越来越高,电流越来越大。

在秋千实验里,如果小孩的做功长时间持续下去,总有一天那个人会飞出去。

同样的,在DRSSTC里,如果共振的时间过长,就会导致电压过高,击穿开关管。由于电路的频率十分高,开关管将会在不到一秒内炸开。该如何解决这个问题呢?

如果小孩在推到一定程度时,都有一个大力士来把那个秋千上的人按住,使他停止摆动,恢复静止。这样,他就不会飞出去了。静止后,小孩可以继续一次次推的动作,而大力士总会在恰当的时间把秋千上的人按住。这样,就安全了。

没错,这就是灭弧电路的原理。当共振开始后,电压逐渐升高,高到一定程度时,灭弧电路开始发挥作用,它发出一个信号使驱动板输入GDT的信号终止(如果是单管,就终止输入到功率管基极或门极的信号,不过很少有人用单管做DRSSTC),共振就停止了。电容开始释放掉它的能量,从头再来。事实上,一般的灭弧信号都是发出一个正脉冲,使驱动板工作,当脉冲停止时,就终止信号。由于DRSSTC的电容,这个灭弧频率必须掌握好,否则只有一个后果:开关管爆炸。一般,灭弧器都是由芯片构成的,很少有人用手来做这个动作。

当然,还有一些比较奇特的灭弧方式。比如科创论坛的圈圈,就曾经使用市电整流不加滤波的方式代替灭弧器。效果应该是还可以的。 如果采用定频的方式,可能不能保证电容和驱动板的信号完美谐振。Steve Ward发明了初级反馈的方式,使得DRSSTC的初级部分可以完美地谐振。具体方式和追频SSTC的次级反馈类似,不过反馈的来源换成了初级线圈。

它用一个互感器将初级线圈和驱动板相连,直接采集初级线圈和电容的LC振荡频率作为发出高频电的信号。这样,保证了初级电容和驱动板的共振。

但这样也有缺点,在调整好初级的谐振后,就要调整初级和次级之间的谐振了,这是个麻烦的过程。但是,当你耗费精力做好一个DRSSTC,一切尘埃落定,按下开关,看到没有SGTC的噪音却有SGTC的壮观程度的电弧,你会发现,这一切努力都是值得的。

当共振开始后,电压逐渐升高,高到一定程度时,灭弧电路开始发挥作用,它发出一个信号使驱动板输入GDT的信号终止(如果是单管,就终止输入到功率管基极或门极的信号,不过很少有人用单管做DRSSTC),共振就停止了。电容开始释放掉它的能量,从头再来。事实上,一般的灭弧信号都是发出一个正脉冲,使驱动板工作,当脉冲停止时,就终止信号。由于DRSSTC的电容,这个灭弧频率必须掌握好,否则只有一个后果:开关管爆炸。一般,灭弧器都是由芯片构成的,很少有人用手来做这个动作。

当然,还有一些比较奇特的灭弧方式。比如科创论坛的圈圈,就曾经使用市电整流不加滤波的方式代替灭弧器。效果应该是还可以的。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9055522.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存