关于微电子工艺技术铜互连!

关于微电子工艺技术铜互连!,第1张

随着科学技术的突飞猛进,半导体制造技术面临日新月异的变化,其中12英寸、90纳米技术和铜工艺">铜工艺被称为引导半导体发展趋势的三大浪潮。传统的半导体工艺是主要采用铝作为金属互联材料(Interconnect),在信号延时(signal delay)上已经受到限制。人们寻找到了新的材料来满足对电阻的要求,这种材料就是铜。简单地说,铜工艺就是指以铜作为金属互联材料的一系列半导体制造工艺。将铜工艺融入集成电路制造工艺可以提高芯片的集成度,提高器件密度,提高时钟频率以及降低消耗的能量。

要达到这样的要求就需要对工艺上做出相应的调整。在新的工艺水平,尤其是在90纳米或以下的技术节点上,主要的信号延时来自互联电路的部分。这一部分可以用以下公式来描述:

τ = RC = (ρL/Wtmetal) *(Kε0LW/tILD)

其中τ是指 total signal delay, R是指金属层的电阻, C是指介电层的电容,ρ是互联金属的电阻率,L是指长度,W是指长度,t 是指厚度, K是介电常数。由公式可见,选用

电阻率比较小的金属材料作为互联材料,和选用介电常数比较小的介电材料作为介电材料是降低信号延时、提高时钟频率的两个主要方向。铜的电阻率为1.7μΩ.cm,铝的电阻率为2.8μΩ.cm,所以铜更为优越。同时由于采用铜线可以降低互联层的厚度,所以同时也降低了上面公式中的电容C。为了进一步降低τ,产业界也在选择比SiO2的K值更加低的材料(即所谓的low k材料)。现有的铝材料(通常选用掺入少量Cu的AlCu合金材料)在器件密度进一步提高的情况下还会出现由电子迁移引发的可靠性问题,而铜在这方面比铝也有很强的优越性。当IC的电流密度超过106A/cm2时,高熔点的材料比低熔点的材料更易于发生电子迁移,原因在于前者具有更高的晶界扩散激活能。铜的熔点为1083℃,铝的熔点为660℃,所以铜更不容易发生电子迁移。和铝相比,铜的电子迁移失效时间要大一到两个数量级,所以它可以在更小的互联层厚度上通过更高的电流密度,从而降低能量消耗。推动铜工艺走向产业化的另一个重要原因就是和传统的铝工艺相比,铜工艺采用了Damascene工艺,减少了金属互联的层数,从而降低了成本。之所以采用Damascene工艺,主要原因在于铜本身不能够和象铝一样,与其它刻蚀气体产生气态的副产品,所以只能采用这种先刻蚀再充填金属互联材料的模式。

自从IBM公司在1985年引入铜,许多关于铜工艺的研发工作都取得了实效。主要包括制造Damascene结构的Damascene工艺、Cu CMP (Chemical Mechanical Polishing) 工艺和ECP (Electroplating) 工艺等(见图1)。

图1. 铜工艺的Dual Damascene 结构流程示

由于铜的扩散会引起器件的所谓“中毒效应”,所以在和source/drain和gate区域的接触金属仍然选用重金属钨。其余的互联金属都可以采用铜,其中的via可以采用single damascene,也可以采用dual damascene结构。在damascene结构经过CVD, Etch 等工艺后,就形成了via的结构。为了防止铜在Si 和SiO2中的扩散,所以必须在via上沉积一层阻挡层,然后再沉积一层很薄的铜作为ECP的导电介质,也作为电镀铜的金属晶体生长的晶核层。由ECP产生电镀铜层。接着的工艺是CMP,主要是磨掉多余的铜,同时将硅片表面磨平。其中的机制主要包括用微小颗粒对表面的机械摩擦和对摩擦材料的化学清洗,摩擦和化学清洗的载体,即所谓的浆料(slurry),是整个铜工艺制造成本比较高的部分。

经过近几年的发展,铜工艺已经日臻成熟,进入量产阶段,现在的铜工艺主要应用于电脑的中央处理器、服务器、通讯及消费应用产品各领域对整体产品表现、高密度及低耗电有极高要求的产品。与此同时,降低RC的另一条有效途径,是选用低介电常数的low k的材料作为介电材料。单纯采用铜来代替铝作为互联材料可以降低RC 大约40%,而low k能够降低成本RC的程度则决定于选择材料的k值大小。Low k 技术还初于初期的研发阶段和试产阶段,目前还面临着一些集成(Intergration)问题,将是未来发展,特别是在90纳米技术及以下的结点上,一个重要的趋势。

有源区和金属的连接工艺:现有半导体器件的结构一般包含半导体衬底、位于半导体衬底中的有源区、位于半导体衬底上方的金属层(金属布线层或引出电极)以及位于半导体衬底与金属层之间的绝缘介质层。绝缘介质层中还设有贯穿孔,贯穿孔内填充有钛、氮化钛、钨等导电材料,以实现有源区与金属层之间的电连接。在此种半导体结构中,半导体衬底与金属层之间往往会形成一个寄生的mos电容。寄生电容的大小由绝缘介质层的厚度、绝缘介质层的介电常数和金属层的面积决定。当寄生电容大到一定程度,会影响半导体器件的频率响应等参数,使产品性能下降。

硅是地壳中赋存最高的固态元素,其含量为地壳的四分之一,但在自然界不存在单体硅,多呈氧化物或硅酸盐状态。硅的原子价主要为4价,其次为2价;在常温下它的化学性质稳定,不溶于单一的强酸,易溶于碱;在高温下化学性质活泼,能与许多元素化合。

硅材料资源丰富,又是无毒的单质半导体材料,较易制作大直径无位错低微缺陷单晶。晶体力学性能优越,易于实现产业化,仍将成为半导体的主体材料。

多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。

硅 硅guī(台湾、香港称矽xī)是一种化学元素,它的化学符号是Si,旧称矽。原子序数14,相对原子质量28.09,有无定形和晶体两种同素异形体,同素异形体有无定形硅和结晶硅。属于元素周期表上IVA族的类金属元素。

晶体结构:晶胞为面心立方晶胞。硅(矽)

原子体积:(立方厘米/摩尔)

12.1

元素在太阳中的含量:(ppm)

900

元素在海水中的含量:(ppm)

太平洋表面 0.03

地壳中含量:(ppm)

277100

氧化态:

Main Si+2, Si+4

Other

化学键能: (kJ /mol)

Si-H 326

Si-C 301

Si-O 486

Si-F 582

Si-Cl 391

Si-Si 226

热导率: W/(m·K)

149

晶胞参数:

a = 543.09 pm

b = 543.09 pm

c = 543.09 pm

α = 90°

β = 90°

γ = 90°

莫氏硬度:6.5

声音在其中的传播速率:(m/S)

8433

电离能 (kJ/ mol)

M - M+ 786.5

M+ - M2+ 1577.1

M2+ - M3+ 3231.4

M3+ - M4+ 4355.5

M4+ - M5+ 16091

M5+ - M6+ 19784

M6+ - M7+ 23786

M7+ - M8+ 29252

M8+ - M9+ 33876

M9+ - M10+ 38732

晶体硅为钢灰色,无定形硅为黑色,密度2.4克/立方厘米,熔点1420℃,沸点2355℃,晶体硅属于原子晶体,硬而有光泽,有半导体性质。硅的化学性质比较活泼,在高温下能与氧气等多种元素化合,不溶于水、硝酸和盐酸,溶于氢氟酸和碱液,用于造制合金如硅铁、硅钢等,单晶硅是一种重要的半导体材料,用于制造大功率晶体管、整流器、太阳能电池等。硅在自然界分布极广,地壳中约含27.6%,

结晶型的硅是暗黑蓝色的,很脆,是典型的半导体。化学性质非常稳定。在常温下,除氟化氢以外,很难与其他物质发生反应。

硅的用途:

①高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型和p型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。在开发能源方面是一种很有前途的材料。另外广泛应用的二极管、三极管、晶闸管和各种集成电路(包括我们计算机内的芯片和CPU)都是用硅做的原材料。

②金属陶瓷、宇宙航行的重要材料。将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。 可应用于军事武器的制造第一架航天飞机“哥伦比亚号”能抵挡住高速穿行稠密大气时摩擦产生的高温,全靠它那三万一千块硅瓦拼砌成的外壳。

③光导纤维通信,最新的现代通信手段。用纯二氧化硅拉制出高透明度的玻璃纤维,激光在玻璃纤维的通路里,无数次的全反射向前传输,代替了笨重的电缆。光纤通信容量高,一根头发丝那么细的玻璃纤维,可以同时传输256路电话,它还不受电、磁干扰,不怕窃听,具有高度的保密性。光纤通信将会使 21世纪人类的生活发生革命性巨变。

④性能优异的硅有机化合物。例如有机硅塑料是极好的防水涂布材料。在地下铁道四壁喷涂有机硅,可以一劳永逸地解决渗水问题。在古文物、雕塑的外表,涂一层薄薄的有机硅塑料,可以防止青苔滋生,抵挡风吹雨淋和风化。天安门广场上的人民英雄纪念碑,便是经过有机硅塑料处理表面的,因此永远洁白、清新。

有机硅化合物,是指含有Si-O键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。

有机硅材料具有独特的结构:

(1) Si原子上充足的甲基将高能量的聚硅氧烷主链屏蔽起来;

(2) C-H无极性,使分子间相互作用力十分微弱;

(3) Si-O键长较长,Si-O-Si键键角大。

(4) Si-O键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。

由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性,广泛应用于航空航天、电子电气、建筑、运输、化工、纺织、食品、轻工、医疗等行业,其中有机硅主要应用于密封、粘合、润滑、涂层、表面活性、脱模、消泡、抑泡、防水、防潮、惰性填充等。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。

有机硅材料按其形态的不同,可分为:硅烷偶联剂(有机硅化学试剂)、硅油(硅脂、硅乳液、硅表面活性剂)、高温硫化硅橡胶、液体硅橡胶、硅树脂、复合物等。

发现

1822年,瑞典化学家贝采里乌斯用金属钾还原四氟化硅,得到了单质硅。

名称由来

源自英文silica,意为“硅石”。

分布

硅主要以化合物的形式,作为仅次于氧的最丰富的元素存在于地壳中,约占地表岩石的四分之一,广泛存在于硅酸盐和硅石中。

制备

工业上,通常是在电炉中由碳还原二氧化硅而制得。

化学反应方程式:

SiO2 + 2C → Si + 2CO

这样制得的硅纯度为97~98%,叫做金属硅。再将它融化后重结晶,用酸除去杂质,得到纯度为99.7~99.8%的金属硅。如要将它做成半导体用硅,还要将其转化成易于提纯的液体或气体形式,再经蒸馏、分解过程得到多晶硅。如需得到高纯度的硅,则需要进行进一步的提纯处理。

同位素

已发现的硅的同位素共有12种,包括硅25至硅36,其中只有硅28,硅29,硅30是稳定的,其他同位素都带有放射性。

用途

硅是一种半导体材料,可用于制作半导体器件和集成电路。还可以合金的形式使用(如硅铁合金),用于汽车和机械配件。也与陶瓷材料一起用于金属陶瓷中。还可用于制造玻璃、混凝土、砖、耐火材料、硅氧烷、硅烷。

元素周期表

总体特性

名称 符号 序号 系列 族 周期 元素分区 密度 硬度 颜色和外表 地壳含量

硅 Si 14 类金属 14族(IVA) 3 p 2330千克/立方米 6.5 深灰色、带蓝色调 25.7%

原子属性

原子量 原子半径 共价半径 范德华半径 价电子排布 电子在每能级的排布 氧化价(氧化物) 晶体结构

28.0855u (计算值)110(111)pm 111pm 210pm [Ne]3s23p2 2,8,4 4(两性的) 金刚石晶格

物理属性

物质状态 熔点 沸点 摩尔体积 汽化热 熔化热 蒸气压 声速

固态 1687 K(1414 °C) 3173 K(2900 °C) 12.06×10-6m3/mol 384.22 kJ/mol 50.55 kJ/mol 4.77 帕(1683K) 无数据

其他性质

电负性 比热 电导率 热导率 第一电离能 第二电离能 第三电离能 第四电离能

1.90(鲍林标度) 700 J/(kg·K) 2.52×10-4 /(米欧姆) 148 W/(m·K) 786.5 kJ/mol 1577.1 kJ/mol 3231.6 kJ/mol 4355.5kJ/mol

第五电离能 第六电离能 第七电离能 第八电离能 第九电离能 第十电离能

16091 kJ/mol 19805 kJ/mol 23780 kJ/mol 29287 kJ/mol 33878 kJ/mol 38726 kJ/mol

最稳定的同位素

同位素 丰度 半衰期 衰变模式 衰变能量(MeV) 衰变产物

28Si 92.23% 稳定

29Si 4.67% 稳定

30Si 3.10% 稳定

32Si 人造 276年 β衰变 0.224 32P

29Si

核自旋 1/2

元素名称:硅

元素原子量:28.09

元素类型:非金属

发现人:贝采利乌斯 发现年代:1823年

发现过程:

1823年,瑞典的贝采利乌斯,用氟化硅或氟硅酸钾与钾共热,得到粉状硅。

元素描述:

由无定型和晶体两种同素异形体。具有明显的金属光泽,呈灰色,密度2.32-2.34克/厘米3,熔点1410℃,沸点2355℃,具有金刚石的晶体结构,电离能8.151电子伏特。加热下能同单质的卤素、氮、碳等非金属作用,也能同某些金属如Mg、Ca、Fe、Pt等作用。生成硅化物。不溶于一般无机酸中,可溶于碱溶液中,并有氢气放出,形成相应的碱金属硅酸盐溶液,于赤热温度下,与水蒸气能发生作用。硅在自然界分布很广,在地壳中的原子百分含量为16.7%。是组成岩石矿物的一个基本元素,以石英砂和硅酸盐出现。

元素来源:

用镁还原二氧化硅可得无定形硅。用碳在电炉中还原二氧化硅可得晶体硅。电子工业中用的高纯硅则是用氢气还原三氯氢硅或四氯化硅而制得。

元素用途:

用于制造高硅铸铁、硅钢等合金,有机硅化合物和四氯化硅等,是一种重要的半导体材料,掺有微量杂质得硅单晶可用来制造大功率的晶体管,整流器和太阳能电池等。

元素辅助资料:

硅在地壳中的含量是除氧外最多的元素。如果说碳是组成一切有机生命的基础,那么硅对于地壳来说,占有同样的位置,因为地壳的主要部分都是由含硅的岩石层构成的。这些岩石几乎全部是由硅石和各种硅酸盐组成。

长石、云母、黏土、橄榄石、角闪石等等都是硅酸盐类;水晶、玛瑙、碧石、蛋白石、石英、砂子以及燧石等等都是硅石。但是,硅与氧、碳不同,在自然界中没有单质状态存在。这就注定它的发现比碳和氧晚。

拉瓦锡曾把硅土当成不可分割的物质——元素。

1823年,贝齐里乌斯将氟硅酸钾(K2SiF6)与过量金属钾共热制得无定形硅。尽管之前也有不少科学家也制得过无定形硅,但直到贝齐里乌斯将制得的硅在氧气中燃烧,生成二氧化硅——硅土,硅才被确定为一种元素。硅被命名为silicium,元素符号是Si。

硅是一种半导体材料,可用于制作半导体器件和集成电路。还可以合金的形式使用(如硅铁合金),用于汽车和机械配件。也与陶瓷材料一起用于金属陶瓷中。还可用于制造玻璃、混凝土、砖、耐火材料、硅氧烷、硅烷。

造房子用的砖、瓦、砂石、水泥、玻璃,吃饭,喝水用的瓷碗、水杯,洗脸间的洁具,它们看上去截然不同,其实主要成分都是硅的化合物。虽然人们早在远古时代便使用硅的化合物粘土制造陶器。但直到1823年,瑞典化学家贝采利乌斯才首次分离出硅元素,并将硅在氧气中燃烧生成二氧化硅,确定硅为一种元素。中国曾称它为矽,因矽和锡同音,难于分辨,故于1953年将矽改称为硅。硅是一种非金属元素,化学符号是Si。它是构成矿物与岩石的主要元素。在自然界硅无游离状态,都存在于化合物中。硅的化合物主要是二氧化硅(硅石)和硅酸盐。例如,花岗岩是由石英、长石、云母混合组成的,石英即是二氧化硅的一种形式,长石和云母是硅酸盐。砂子和砂岩是不纯硅石的变体,是天然硅酸盐岩石风化后的产物。硅约占地壳总重量的27.72%,其丰度仅次于氧。

硅是非金属元素,有无定形和晶体两种同素异形体,晶体硅具有金属光泽和某些金属特性,因此常被称为准金属元素。硅是一种重要的半导体材料,掺微量杂质的硅单晶可用来制造大功率晶体管、整流器和太阳能电池等。二氧化硅(硅石)是最普遍的化合物,在自然界中分布极广,构成各种矿物和岩石。最重要的晶体硅石是石英。大而透明的石英晶体叫水晶,黑色几乎不透明的石英晶体叫墨晶。石英的硬度为7。石英玻璃能透过紫外线,可以用来制造汞蒸气紫外光灯和光学仪器。自然界中还有无定形的硅,叫做硅藻土,常用作甘油炸药( *** )的吸附体,也可作绝热、隔音材料。普通的砂子是制造玻璃、陶瓷、水泥和耐火材料等的原料。硅酸干燥脱水后的产物为硅胶,它有很强的吸附能力,能吸收各种气体,因此常用来作吸附剂、干燥剂和部分催化剂的载体

这就是硅。

[编辑本段]缺乏症

饲料中缺少硅可使动物生长迟缓。动物试验结果显示,喂饲致动脉硬化饮料的同时补充硅,有利于保护动物的主动脉的结构。另外,已确定血管壁中硅含量与人和动物粥样硬化程度呈反比。在心血管疾病长期发病率相差两部的人群中,其饮用水中硅的含量也相差约两倍,饮用水硅含量高的人群患病较少。并且他已知的危险因素都不能充分解释这种不同

常用方程式

Si + 2OH- + H2O == SiO32- + 2H2↑

SiO2 + 2OH- == SiO32- + H2O

SiO32- + 2NH4+ + H2O == H4SiO4↓ + 2NH3↑

SiO32- + CO2 + 2H2O == H4SiO4↓+ CO32-

SiO32- + 2H+ + H2O == H4SiO4↓

3SiO32- + 2Fe3+ == Fe2(SiO3)3↓

3SiO32- + 2Al3+ == Al2(SiO3)3↓

单晶硅 中文别名:硅单晶

英文名: Monocrystalline silicon

分子式: Si

分子量:28.086

CAS 号:7440-21-3

硅是地球上储藏最丰富的材料之一,从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。直到上世纪60年代开始,硅材料就取代了原有锗材料。硅材料――因其具有耐高温和抗辐射性能较好,特别适宜制作大功率器件的特性而成为应用最多的一种半导体材料,目前的集成电路半导体器件大多数是用硅材料制造的。

硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。

单晶硅熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。

单晶硅主要用于制作半导体元件。

用途: 是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等

多晶硅 多晶硅polycrystalline silicon

性质:灰色金属光泽。密度2.32~2.34。熔点1410℃。沸点2355℃。溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。硬度介于锗和石英之间,室温下质脆,切割时易碎裂。加热至800℃以上即有延性,1300℃时显出明显变形。常温下不活泼,高温下与氧、氮、硫等反应。高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。电子工业中广泛用于制造半导体收音机、录音机、电冰箱、彩电、录像机、电子计算机等的基础材料。由干燥硅粉与干燥氯化氢气体在一定条件下氯化,再经冷凝、精馏、还原而得。

多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。

参考这里:

http://baike.baidu.com/view/4748.htm?func=retitle

http://baike.baidu.com/view/174762.htm

http://baike.baidu.com/view/381366.htm?func=retitle


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9090301.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存