物理学家将铁电性设计成 金属二硫属化物半导体

物理学家将铁电性设计成 金属二硫属化物半导体,第1张

麻省理工学院的物理学家和同事通过 *** 纵只有几个原子层厚的超薄材料片,为过渡金属二硫属化物半导体 (TMDs) 设计了一种新特性。

麻省理工学院的团队表明,当两个单片 TMD(每片只有几个原子层厚)相互平行堆叠时,材料就会变成铁电体。在铁电材料中,正电荷和负电荷自发地流向不同的侧面或两极。在施加外部电场时,这些电荷会切换两侧,从而反转极化。在新材料中,所有这些都发生在室温下。

TMDs 已经因其电学和光学特性而广为人知。研究人员认为,这些特性与新赋予的铁电性之间的相互作用可能会导致各种有趣的应用。

Cecil 的 Pablo Jarillo-Herrero 说:“在很短的时间内,我们已经成功地大大扩展了二维铁电体这个小而不断增长的家族,这是纳米电子学和人工智能应用前沿的一种关键材料。”和 Ida Green 物理学教授和该工作的领导者,该工作在 Nature Nanotechnology 上进行了报道。 Jarillo-Herrero 还隶属于麻省理工学院的材料研究实验室。

除 Jarillo-Herrero 外,论文的作者还有 MIT 物理学研究生王希瑞; Kenji Yasuda 和 Yang Zhang,麻省理工学院博士后;哥伦比亚大学的刘松;日本国立材料科学研究所的 Kenji Watanabe 和 Takashi Taniguchi;哥伦比亚大学的詹姆斯·霍恩和麻省理工学院物理学副教授梁福。 (上图在麻省理工学院实验室是麻省理工学院博士后助理安田健二( 左)和麻省理工学院物理学研究生王希瑞)。

超薄铁电体

去年,Jarillo-Herrero 和许多相同的同事表明,当两个原子薄的氮化硼 (BN) 片相互平行堆叠时,氮化硼变成铁电体。在目前的工作中,研究人员将相同的技术应用于 TMD。

由 BN 和 TMD 制成的超薄铁电体可能具有重要的应用,包括更密集的计算机内存存储。但它们很少见。随着 Nature Nanotechnology 报道的四种新型 TMD 铁电体的加入,它们都属于同一个半导体家族,“我们的室温超薄铁电体的数量几乎翻了一番,”Xirui Wang 说。此外,她指出,大多数铁电材料都是绝缘体。 “很少有铁电体是半导体。”

“这不仅限于 BN 和 TMD,”Kenji Yasuda 说。 “我们希望我们的技术可用于为其他现有材料增加铁电性。例如,我们可以在磁性材料中添加铁电性吗?”

这项工作由美国能源部科学办公室、陆军研究办公室、戈登和贝蒂摩尔基金会、美国国家科学基金会、日本文部科学省 (MEXT) 资助,和日本学术振兴会。

参考

Wang,X.,Yasuda,K.,Zhang,Y.等人的“菱面体堆叠双层过渡金属二硫化物的界面铁电性”;纳特。纳米技术。 (2022 年)。

对于非中心对称体系,在打破时间反演对称性后,其电荷输运性质可表现出非互易性,即单向磁电阻。不同于重金属/铁磁体或者拓扑绝缘体/铁磁体异质结的单向磁电阻,非中心对称体系的非互易输运并不需要磁性界面的参与。近年来,人们在极性半导体、拓扑绝缘体以及界面/表面Rashba等体系中观测到大的非互易电荷输运特性,但是非互易电荷输运特性仅存在于低温,这严重制约了其实际应用。寻找具有室温非互易电荷输运的非中心对称材料,以实现基于非互易响应的新型两端口整流器件是目前国际上研究的热点之一。

中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室成昭华课题组利用分子束外延技术生长出高质量的铁电Rashba半导体薄膜α-GeTe。前期的角分辨光电子能谱(ARPES)测量结果显示,α-GeTe同时具有表面和体Rashba能带结构,其体Rashba系数可至~4.3 eVÅ,对应的自旋劈裂能高达~2300 KBT【Xu Yang et al., Nano Lett . 21, 77–83(2021)】,这为实现室温非互易输运提供了可能性。最近,他们与沙特阿卜杜拉国王 科技 大学张西祥教授课题组合作,基于二次谐波探测技术,在α-GeTe中探测到可达室温的非互易输运行为,发现单向磁电阻与电流和外磁场强度均成正比。进一步研究表明非互易输运系数随着温度的增加而呈现非单调变化,这有别于以往的研究体系中非互易输运系数随着温度的增加而急剧减小的规律。

他们提出了Rashba体系中非线性的自旋流和电荷流的转换模型,很好地解释了实验结果,并确定α-GeTe的非互易电荷输运主要源于其体Rashba能带贡献。该工作不仅为未来整流器件的研究提供了新的思路,并且阐述了Rashba体系中非互易输运的微观机制。

相关工作近期发表于学术期刊《自然通讯》(Nature Communications).

博士后李岩(物理所博士毕业生)、博士生李阳为论文共同第一作者,成昭华研究员和沙特阿卜杜拉国王 科技 大学的张西祥教授为共同通讯作者。艾克斯-马赛大学的Aurélien Manchon教授给予了理论指导。该项研究工作得到了国家重点研发计划、国家自然科学基金和中国科学院前沿科学研究计划的资助以及阿卜杜拉国王 科技 大学的支持。

相关工作链接一

相关工作链接二


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9093587.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存