硼在氧化硅层的固溶度

硼在氧化硅层的固溶度,第1张

硼在氧化硅层的固溶度为5×1020cm度。半导体器件开管扩散工艺显示,硼离子在硅中的固溶度是5×1020cm度。硼是非金属元素,符号B,分别有结晶与非结晶两种形态,一般用于制合金、燃料等,在医药、农业和玻璃等工业中也应用广泛。

热处理温度要求:650±5℃;

②热处理目的:还原直拉单晶硅片真实电阻率

1、热处理后电阻率会有什么变化

由于氧是在大约1400℃引入硅单晶的,所以在一般器件制造过程的温度范围(≤1200℃),以间隙态存在的氧是处于过饱和状态的,这些氧杂质在器件工艺的热循环过程中由于固溶度的降低会产生氧沉淀。一般而言,氧浓度越高,氧沉淀越易成核生长,形成的氧沉淀也就越多。反之,氧沉淀就越少。尤其是当氧浓度小于一定值时(<5×1017个/厘米3),几乎就观察不到氧沉淀的形成。

2、热处理的几个温度区间概念:

热施主:350-550℃,代表温度450℃.

450℃热处理后(或同等效果,如单晶在炉子里的冷却),可观察到N型样品的电阻率下降而P型样品的电阻率增高,有如引入一定数量的施主现象一样。这是由于在此温度下,溶解的氧原子迅速形成络合物(SiO4)所引起的热生施主,其电阻率与硅中氧含量的四次方成反比。

新施主:550-800℃,代表温度650℃.

650℃热处理,在迅速冷却的条件下(即迅速跨过450℃),可消除热生施主。即我们可观察到N型样品电阻率恢复高;P型样品电阻率恢复低。

沉淀:800-1200℃,代表温度1050℃

1050℃热处理,会带来氧沉淀,且因沉淀诱生层错等缺陷。

还原:>1200℃

>1200℃热处理,氧恢复到间隙态。

离子注入是离子参杂的一种。

随着VLSI器件的发展,到了70年代,器件尺寸不断减小,结深降到1um以下,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。

离子注入具有如下的特点:

①可以在较低温度下(400℃)进行,避免高温处理;

②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制;

③可选出一种元素进行注入,避免混入其他杂质;

④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多;

⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9128570.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存