隐身材料是什么

隐身材料是什么,第1张

隐身材料是实现武器隐身的物质基础。武器装 备如飞机、舰船、导d等使用隐身材料后,可大大减小自身的信号特征,提高生存能力。隐身材料按频谱可分 为声、雷达、红外、可见光、激光隐身材料、按材料用途可分为隐身涂层材料和隐身结构材料。声隐身材料包 括消声材料,隔声材料,吸声材料及消声、隔声、吸声的复合体。主要用于新一代潜艇。雷达隐身材料能吸收雷 达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。如日本研制的一种由电阻抗变换层和低阻抗谐振 层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成 ,在1~20吉赫的雷达波段上吸收率达20分贝以上。另外,一些由硅、碳、硼、玻璃纤维,以及某些陶瓷与有机聚 合物构成的复合材料,有很高的机械强度,可用于制作部分结构件,如飞机蒙皮、雷达天线罩等,同时又具有隐身 功能,这类材料称为隐身结构材料。红外隐射材料主要用于车辆、舰艇、军用飞机及其他军用设施,使这些装 备和设施的红外辐射与背景基本达到一致,敌人的红外探测器难以分辨。用铝粉及含有二价铁离子的材料作为 填充料,加到能透过红外线的粘结剂中,可构成红外隐身涂料。可见光隐身材料通常由铝粉、多属氧化物粉和有 机物复合而成,或由掺杂的半导体材料构成,可形成与背景颜色相匹配的迷彩图案,满足可见光隐身的要求。激 光隐身材料用来对抗激光制导武器、激光雷达和激光测距机,要求这些材料对激光的反射率低可吸收率高。对 隐身材料来说,对某种探测手段的隐身性能好,往往对另一种探测手段的隐身性能就不好。例如,对激光探测的 隐身性能好,对红外探测就不能隐身。这就是隐身材料的相容性问题。为解决这一问题,研制了兼容型隐身材 料,如雷达波、红外兼容隐身材料,红外、激光兼容隐身材料,雷达波、红外、激光等多种兼容的隐身材料等。 这是当前隐身材料的发展方向。

幻彩隐形涂料在日常光源下是隐形的,只有在紫光灯下才能显现出来。用幻彩隐形涂料作出的壁画,常光下无任何痕迹,打开紫光灯后会突然呈现出奇妙的画面,使您感受到一种超越时空的视觉效果.

等离子体隐形涂料抗雷达 吸波

根据BBC报道,科学家宣布他们距离制成可使人类隐身的材料仅有一步之遥。据称,来自加州大学伯克利分校的研究人员开发出了一种新型纳米材料,可使3D物体周围的光线折射后绕过物体,从而达到隐形的效果,研究团队表示今后将有足够大的这种材料出现,可使人类隐身。

红外隐身涂料以其独特的优点在热红外隐身技术研究中占有重要的地位。

3.2.1红外透明黏合剂

为降低热隐身涂料的发射率,既有较低的红外吸收率,又有较好的物理机械性能的红外透明聚合物是较理想的红外隐身涂料黏合剂。现有的对红外高透明的有机黏合剂有聚烯烃类(聚乙烯、氯化聚苯乙烯、乙烯与苯乙烯的共聚物,商品名称为Kraton),橡胶类(丁基橡胶、氯化橡胶和三元乙丙橡胶)以及其他聚合物(醇酸树脂、环氧树脂等)。其中Kraton在8~14μm范围内,透明度可达0.8,是比较理想的黏合剂。国内对三元乙丙橡胶进行改性或接枝聚合报道较多。董延庭等人通过改性方法用丙烯酸树脂单体对聚丁二烯和三元乙丙橡胶线型聚合物进行接枝聚合,对接枝聚合物的发射率、成膜性能和红外光谱特征进行了分析,研制出在红外波段透明性高、发射率低(最低可达0.19),且成膜性能优良的高透明红外隐身涂料黏合剂。张梅等人为克服三元乙丙橡胶(EPDM)其强度低、黏结力小和透气性差等缺点,进行环氧化改性及透气性改进,对红外发射率和织物各项性能进行了测试。结果表明,改性后的乙丙橡胶可以作为织物用伪装涂料黏合剂,并值得做进一步的研究。

3.2.2导电或半导体高分子材料

与红外透明黏合剂不同,导电高分子可直接提供热隐身效果,因此对制备热隐身涂料具有特殊意义。目前西方国家正在研究电导率随频率分布、红外发射率随时间改变的半导体聚合物,以用于热伪装。

导电高分子材料按其组成和导电机理可以分为本征型和复合型。前者指聚合物本身具有导电性或经掺杂处理后才具有导电功能的聚合物,因其加工合成困难、成本高,仍处于研究阶段。所以研究重点为复合型导电高分子材料。其获得方法有两种:①在基体聚合物中填充各种导电填料;②将结构型导电聚合物或亲水性聚合物与基体聚合物共混。

紫外线荧光隐形油墨分为长、短波荧光。长波荧光油墨有隐形无色或有色两种。前者在通常情况下为白色或无色,印刷在纸张或塑料薄膜上不显示颜色,在紫外光或验钞机下不同品种会显示出不同的颜色,有红色、黄色、绿色、蓝色等不同种类。

近期,有研究者利用外延生长得到的四英寸高质量、高定向单层二硫化钼(MoS2)薄膜,结合传统的微加工工艺,通过优化绝缘层与接触电阻,制备出了大面积柔性透明的MoS2电子器件,这让隐形眼镜内嵌显示屏成为可能。

近几年,在半导体器件发展微型化和柔性化的驱动下,二维半导体材料如二硫化钼展现出了独特的优势,即具有优异的光、电、机械性能和超薄透明的物理特性,进而使它非常适合用来制备更轻、更薄、更快、更灵敏的电子学器件。

然而,在实际生产中单层MoS2的研究仍存在一些问题:一是难以制备出高质量大尺度二硫化钼晶圆;二是在器件工艺上,难以实现高密度、高性能、大面积均一的器件加工。

为了解决单层MoS2晶圆的生产难题,研究者利用自主设计搭建的多源化学气相沉积系统,采用立式生长和多点形核的方法,在蓝宝石衬底上外延制备出了四英寸高质量连续单层二硫化钼晶圆,有效解决了传统方法制备的单层MoS2晶圆会出现晶粒尺寸小、取向随机的问题。

此外,他们还研究出了三大器件加工工艺:采用传统的微加工工艺,逐层制作器件,实现了器件层与层之间的洁净和兼容,进而保证了器件阵列的大面积均一性;采用物理吸附与化学反应相结合的原子层沉积方法,提高器件绝缘层质量;采用金/钛/金多层结构作为接触电极,既能降低接触电阻,也可解决机械性能问题。

总的来说,该研究团队制备出的大面积柔性MoS2电子器件具有高密度、高产率以及高性能,因而可用来制备具有低功耗、高性能和柔性的产品。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9139573.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存