半导体有辐射吗?对人体有哪些危害?

半导体有辐射吗?对人体有哪些危害?,第1张

所谓半导体的辐射主要是器件在工作时产生的电磁场辐射,其他如有X射线功能的半导体器件辐射在特殊工种中才会遇到。日常如手机在拨号时会产生较大电磁场(>100mv),又如电脑显示器,电视机等都会有大小不等的磁场产生。人受辐射的影响是一个潜移默化的理论,当下城市大多人的正常生活中每天都会有半导体的辐射存在,但大多都是很小的磁场(<50MV,我曾经用示波器做过实验),基本不会担心有什么直接危害,但是长期的辐射下工作加上个人本身体质的原因,是有或多或少的影响,比如你会听说某核工业基地周围的人群癌症发病率高等案例,半导体器件的辐射没核辐射那么严重但你如果问危害的话就是类似原理,通过个人体质增强,注意饮食搭配,减少持续受辐射时间都是减少辐射危害的有效办法。

化合物半导体探测器是六十年代快速发展的新型核辐射探测器件之一。室温化合物半导体探测器是区别于P-N结型探测器、锂漂移型探测器、高纯锗核探测器等的一种特殊类型半导体核探测器。

室温核辐射探测的化合物半导体材料应当具备以下的特征:

(1)组成材料的元素应具有较高的原子序数,以此确保该材料对γ射线较高的阻止本领,以保证其具有较高的探测效率;

(2)材料应具有较大的禁带宽度,一般大于1.5eV,以保证探测器工作在室温时有较低的漏电流和较高的电阻率;

(3)材料应具有良好的工艺性能,较容易制得高纯度、低晶格缺陷的单晶体。此外材料应具有优良的机械性能和化学稳定性,以便于进行机械加工,容易制成欧姆接触或势垒接触;

(4)材料应具有优异的物理性能,可以耐较高的反向偏压(反向偏压能达到几百伏),反向漏电流尽可能小,载流子的迁移率-寿命积要大,以确保探测器具有较小的热噪声和良好的能量分辨率。

室温核辐射半导体探测器是以大尺寸的高质量的化合物半导体晶体材料(碘化汞、锑化铝、碲化镉、碲锌镉、碘化铅、砷化镓、硒化镉等)的研制为主体,涉及到材料制备、器件设计和器件制备等关键技术。1967年,Prince和Polishuk第一次列出了碲化镉、磷化镓和硒化镉三种可以制作室温核探测材料的材料。20世纪70年代初美国开始对碘化汞展开了研究,碘化汞晶体具有较高的禁带宽度和电阻率,但是其化学稳定性较差,且常温下容易挥发潮解,制成的探测器必须进行严格的密封处理。与此同时,1977年,Armantrout等人通过对比几种最有前途的室温半导体核探测材料,最有希望的是锑化铝材料,但是该材料的单晶极难生长且极易潮解。Eberhardt等人利用液相外延生长技术得到了高完整性能砷化镓单晶,最先成功制造出有较好能量分辨率的伽马射线探测器,但是由于其原子序数较低,对于高能射线的阻止本领和探测效率都较低,发展受到了限制。但是碲化镉探测器的优点在于有较大的原子序数,对伽马射线有较高的阻止本领,探测效率较高,但有较大的热激发产生的漏电流,能量分辨率

低且有极化效应。由于碲化镉晶体的上述缺点,人们在碲化镉晶体中掺入锌,使其带宽增加,而发展成了一种新的材料。碲锌镉材料用于常温半导体探测器最早可追溯到1967年,但直到20世纪90年代初,生产工艺的提高才得以大大改善了碲锌镉晶体的特性,研究得到了实质性进展。随着锌含量的不同,禁带宽度由近红外至绿光波段连续变化,且无极化现象。但是碲锌镉存在两个主要缺点:能量分辨率不高;由于生长工艺的复杂性,高质量大尺寸的碲锌镉很难获得。

用于制作核辐射探测器的材料还有碲化锌、硫化铯、碘化铟、硒化稼等化合物半导体材料,人们对这些材料及其探测器还没有进行深入的研究。

现今,国内四川大学、清华大学、上海大学、兰州大学、重庆大学、西北工业大学、中国科学院苏州纳米技术与纳米仿生研究所、中国原子能科学研究院核技术应用研究所、中国科学院长春光学精密机械与物理研究所以及燕山大学(与美国伊利诺伊大学合作)等单位开始在国家自然科学基金或其他课题资助下进行了一系列化合物半导体单晶(如碘化铅、碘化汞、碲锌镉、氮化镓、碘化铟等)的生长、性能和核探测器应用的研究工作。

能够指示、记录和测量核辐射的材料或装置。辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。

计数器 以电脉冲的形式记录、分析辐射产生的某种信息。计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。

气体电离探测器 通过收集射线在气体中产生的电离电荷来测量核辐射。主要类型有电离室、正比计数器和盖革计数器。它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。电离室工作电压较低,直接收集射线在气体中原始产生的离子对。其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。

多丝室和漂移室 这是正比计数器的变型。既有计数功能,还可以分辨带电粒子经过的区域。多丝室有许多平行的电极丝,处于正比计数器的工作状态。每一根丝及其邻近空间相当于一个探测器,后面与一个记录仪器连接。因此只有当被探测的粒子进入该丝邻近的空间,与此相关的记录仪器才记录一次事件。为了减少电极丝的数目,可从测量离子漂移到丝的时间来确定离子产生的部位,这就要有另一探测器给出一起始信号并大致规定了事件发生的部位,根据这种原理制成的计数装置称为漂移室,它具有更好的位置分辨率(达50微米),但允许的计数率不如多丝室高。

半导体探测器 辐射在半导体中产生的载流子(电子和空穴),在反向偏压电场下被收集,由产生的电脉冲信号来测量核辐射。常用硅、锗做半导体材料,主要有三种类型:①在n型单晶上喷涂一层金膜的面垒型②在电阻率较高的 p型硅片上扩散进一层能提供电子的杂质的扩散结型③在p型锗(或硅)的表面喷涂一薄层金属锂后并进行漂移的锂漂移型。高纯锗探测器有较高的能量分辨率,对γ辐射探测效率高,可在室温下保存,应用广泛。砷化镓、碲化镉、碘化汞等材料也有应用。

闪烁计数器 通过带电粒子打在闪烁体上,使原子(分子)电离、激发,在退激过程中发光,经过光电器件(如光电倍增管)将光信号变成可测的电信号来测量核辐射。闪烁计数器分辨时间短、效率高,还可根据电信号的大小测定粒子的能量。闪烁体可分三大类:①无机闪烁体,常见的有用铊(Tl)激活的碘化钠NaI(Tl)和碘化铯CsI(Tl)晶体,它们对电子、γ辐射灵敏,发光效率高,有较好的能量分辨率,但光衰减时间较长;锗酸铋晶体密度大,发光效率高,因而对高能电子、γ辐射探测十分有效。其他如用银 (Ag)激活的硫化锌ZnS(Ag)主要用来探测α粒子玻璃闪烁体可以测量α粒子、低能X辐射,加入载体后可测量中子;氟化钡 (BaF2)密度大,有荧光成分,既适合于能量测量,又适合于时间测量。②有机闪烁体,包括塑料、液体和晶体(如蒽、茋等),前两种使用普遍。由于它们的光衰减时间短(2~3纳秒,快塑料闪烁体可小于1纳秒),常用在时间测量中。它们对带电粒子的探测效率将近百分之百。③气体闪烁体,包括氙、氦等惰性气体,发光效率不高,但光衰减时间较短(<10纳秒)。

切伦科夫计数器 高速带电粒子在透明介质中的运动速度超过光在该介质中的运动速度时,则会产生切伦科夫辐射,其辐射角与粒子速度有关,因此提供了一种测量带电粒子速度的探测器。此类探测器常和光电倍增管配合使用;可分为阈式(只记录大于某一速度的粒子)和微分式(只选择某一确定速度的粒子)两种。

除上述常用的几种计数器外,还有气体正比闪烁室、自猝灭流光计数器,都是近期出现的气体探测器,输出脉冲幅度大,时间特性好。电磁量能器(或簇射计数器)及强子量能器可分别测量高能电子、γ辐射或强子(见基本粒子)的能量。穿越辐射计数器为极高能带电粒子的鉴别提供了途径。

径迹室 通过记录、分析辐射产生的径迹图象测量核辐射。主要种类有核乳胶、云室和泡室、火花室和流光室、固体径迹探测器。

核乳胶 能记录带电粒子单个径迹的照相乳胶。入射粒子在乳胶中形成潜影中心,经过化学处理后记录下粒子径迹,可在显微镜下观察。它有极佳的位置分辨本领(1微米),阻止本领大,功用连续而灵敏。

云室和泡室 使入射粒子产生的离子集团在过饱和蒸气中形成冷凝中心而结成液滴(云室),在过热液体中形成气化中心而变成气泡(泡室),用照相方法记录,使带电粒子的径迹可见。泡室有较好的位置分辨率(好的可达10微米),本身又是靶,目前常以泡室为顶点探测器配合计数器一起使用。

火花室和流光室 这些装置都需要较高的电压,当粒子进入装置产生电离时,离子在强电场下运动,形成多次电离,增殖很快,多次电离过程中先产生流光,后产生火花,使带电粒子的径迹成为可见。流光室具有较好的时间特性。它们都具有较好的空间分辨率(约 200微米)。除了可用照相记录粒子径迹外,还可记录电脉冲信号,作为计数器用。

固体径迹探测器 重带电粒子打在诸如云母、塑料一类材料上,沿路径产生损伤,经过化学处理(蚀刻)后,将损伤扩大成可在显微镜下观察的空洞,适于探测重核。

由许多类型的探测器、磁铁、电子仪器、计算机等组成的辐射谱仪,可获得多种物理信息,是近代核物理及粒子探测的发展趋势。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9151958.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存