半导体中钴元素对非金属的影响

半导体中钴元素对非金属的影响,第1张

半导体中钴元素对非金属的影响深远,以半导体为根基的第三次产业革命浪潮在人工智能和大数据的助力下不断引爆,但眼见摩尔定律濒临极限,新材料的革新势必再上一个阶梯。从 1997 年 IBM 以“铜”取代“铝”后,二十年后的今天,属于“钴”的时代在半导体产业正式登场,将挑起产业转折点的跨时代任务!

半导体产业在这几年有不少关键转折点出现,但多半是在晶体管架构、设备技术上,如 3D 立体式鳍式晶体管 FinFET 接棒 2D 平面晶体管架构、 3D NAND 架构取代传统的 2D NAND 技术,这种立体式架构的革新让半导体制程顺利走入 14/16 纳米等高端技术。

另外,荷兰企业 ASML 的 EUV 光刻机即将在 7 纳米工艺技术上实现量产,这些都在半导体行业中都具有跨越时代的意义,值得历史留名,也因为有这些转折点的产生,摩尔定律的生命因此延续。

短短数年,我们经历了 FinFET 、 EUV 光刻机的成功,而半导体产业的下一个转折点其实就在不远处,会是由新材料的革新接棒,“钴”时代即将登场,逐渐终结“钨”和“铜”的时代。

10 纳米和 7 纳米节点进入钴导线时代,设备龙头应材推动产业革命的到来

随着半导体制程朝 10 纳米以下发展,原本以“铜”作为导线材料开始暴露导电速率不足等缺点,让制程工艺技术在 10 纳米、 7 纳米节点上遇到瓶颈,因此半导体大厂和设备大厂纷纷投入新材料研发,突破半导体制程技术的限制。

美国公司应用材料(Applied Materials, Inc)是全球半导体设备龙头,每年投入的研发经费十分可观,也是最早投入以“钴”作为导线材料取代传统“铜”、“钨”的半导体技术大厂之一,现在,这样的产业革命已经即将要落实在商用化芯片,具有划时代的意义!

在 10 纳米、 7 纳米等先进工艺下以“钴”作为导线材料,可以达到导电性能更强、功耗更低,芯片达到体积更小的目标,应材解释,这就是推动“PPAC”(效能 performace、功耗 power、面积 area、成本 cost)不断往前,未来甚至往下做到 5 纳米、 3 纳米工艺节点。

应用材料解释,不像是晶体管的体积越小,效能会越高,在金属镀层的接点和导线上,反而是体积越小,效能越差,如果把导线比喻成吸管,吸管越小是越容易阻塞,因此,导线材料的选择上有三个关键参考点,分别是填满能力、抗阻力、可靠度。

在 30 纳米以上的工艺技术,“铝”在填满、可靠度两方面表现不佳,但“铜”则是十分称职,因此仍扮演很重要的材料。

然进入 20 纳米以下高端工艺后,无论是钨、铝、铜的表现其实都不理想,相较之下,“钴”在填满能力、抗阻力、可靠度三方面是异军突起,尤其在半导体 10 /7 纳米以下的高端技术,“钴”是新一代导线材料之王。

图丨钨铝铜钴的比较

应材分析,晶体管的关键临界尺寸(Critical Dimension)是在 15 纳米左右,意思是到了该尺寸时,钴与铜的性能参数比达到交叉点,而所谓晶体管的关键临界尺寸,与制程技术工艺节点之间的比例约是 2 比 1,意思是,当 15 纳米是使用铜材料的关键临界尺寸极限,放大到制程工艺节点上,瓶颈就是 7 纳米左右。

关于“钨”时代的登场,应材进一步表示,在芯片关键临界尺寸的微缩上,“钨”与“铜”两个金属材料在 10 纳米以下已经无法完成微缩任务,因为其电性在晶体管接点与局部中段金属导线制程上已逼近物理极限,“钨”与“铜”再也无法导入成为接口,这就成为 FinFET 无法发挥完全效能的一大瓶颈。

而“钴”这个金属刚好能消除这个瓶颈,但也需要在制程系统策略上进行变革,随着产业将结构微缩到极端尺寸,这些材料的表现会有所不同,而且必须在原子级上,有系统地进行工程,通常是在真空的条件下进行。

(1)玻璃棒(2)Si 调节pH,保证Co 2+ 不沉淀,而使铁离子全部沉淀

(3)3Co+8H + +2NO 3 - =3Co 2+ +4H 2 O+2NO↑    

(4)CoC 2 O 4 CoO+CO↑+CO 2 ↑   6CoO+O 2 2Co 3 O 4

试题分析:(1)实验室过滤所需的仪器有铁架台、铁圈、烧杯、玻璃棒和漏斗。(2)在加入硝酸酸化时钴、Fe都与硝酸发生反应得到硝酸钴、硝酸铁而Si不能与稀硝酸发生反应,所以过滤后存在于滤渣A中。因此滤渣A的主要成分除过量的Co 3 (PO 4 ) 3 和Fe(OH) 3 外还有Si。加入CO 3 (PO 4 ) 2 的目的是调节pH,保证Co 2+ 不沉淀,而使铁离子全部沉淀。(3)Co与稀硝酸反应生成 Co 2+ ,根据质量守恒定律和电子守恒、电荷守恒,可知该反应的离子方程式为3Co+8H + +2NO 3 - =3Co 2+ +4H 2 O+2NO↑。(4)滤渣B(CoC 2 O 4 )灼烧发生分解反应:CoC 2 O 4 =CoO+CO↑+CO 2 ↑。得到固体为CoO。n(CoC 2 O 4 )=14.7g÷147g/mol=0.1mol根据元素守恒可得m(CoO)=0.1mol×75g/mol=7.5g而在t 3 时固体的质量为8.03g.根据质量守恒定律可知在BC段发生了反应:6CoO+O 2 2Co 3 O 4 。

(1)实验室过滤所需的仪器有铁架台、铁圈、烧杯、玻璃棒和漏斗,故答案为:玻璃棒;

(2)硅和稀硝酸之间不会反应,滤渣A的成分除过量的Co3(PO4)3和Fe(OH)3外还有Si,加入CO3(PO4)2后,调节pH,使之可以和铁离子之间反应,但是和钴离子之间不反应,这样可以将铁离子除去,故答案为:Si;调节pH,保证Co2+不沉淀,而使铁离子全部沉淀;

(3)硝酸具有氧化性,能将金属Co氧化,离子方程式为:3Co+8H++2NO3-═3Co2++4H2O+2NO↑,故答案为:3Co+8H++2NO3-═3Co2++4H2O+2NO↑;

(4)AB段,固体质量减小7.2g 是一氧化碳和二氧化碳的质量和,发生反应:CoC2O4

  △  
.
 
CoO+CO↑+CO2↑;BC段质量增加,是发生6CoO+O2
  △  
.
 
2Co3O4的反应,

故答案为:CoC2O4

  △  
.
 
CoO+CO↑+CO2↑;6CoO+O2
  △  
.
 
2Co3O4.


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9152108.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存