安森美半导体:工业机器视觉细分领域的隐形冠军

安森美半导体:工业机器视觉细分领域的隐形冠军,第1张

众多周知,在 汽车 半导体领域,安森美半导体堪称大牛,你或许不知道的是,在工业细分领域,安森美半导体亦为翘楚。在2020年9月25日举行的安森美半导体智能感知策略及方案在线媒体交流会上,中国工控网获悉,据欧洲第三方调研公司Yole Development数据显示,安森美半导体在工业机器视觉领域的市场份额排名第一。

致力于推动高能效电子的创新,安森美半导体提供全面的高能效联接、感知、电源管理、模拟、逻辑、时序、分立及定制器件阵容,使客户能够减少全球的能源使用。安森美半导体市场范围非常广泛,核心市场主要是在 汽车 、工业、通信、消费类和计算。

“我们最大的市场份额集中在 汽车 、工业和通信。”安森美半导体智能感知部全球市场和应用工程副总裁易继辉(Sammy Yi)说,“这些行业有几个非常重要的共同点,一是对产品性能要求非常高;二是对产品质量和可靠性要求非常高;三是对产品长期供货的持续性要求非常高。而这正是安森美半导体的优势所在。”

安森美半导体主要分为三个产品部门,分别是电源方案部(PSG)、先进方案部(ASG)和智能感知部(ISG)。设立于2014年的智能感知部(ISG)年轻且活跃,是安森美半导体目前成长速度最快的部门。

“ 汽车 、机器视觉和边缘人工智能是智能感知部主攻的三个市场方向。”易继辉说, 汽车 行业虽属传统行业,但近年来得益于电力化、智能化, 汽车 行业焕发新生。为了打造更加安全、舒适的智能 汽车 ,各类感知产品应用需求激增。“安森美半导体在 汽车 智能感知方面成长速度远比 汽车 行业本身发展速度快得多,就是因为 汽车 采用新技术的速度非常快。”

同样,在工业4.0时代, 历史 悠久的机器视觉在自动化、人工智能等技术的加持下不断产生新的发展动力和活力。特别是在中国市场,越来越多的制造企业考虑采用机器视觉帮助生产线实现检查、测量和自动识别等功能,以提高效率并降低成本,从而实现生产效益最大化。

机器视觉作为新兴技术被寄予厚望,被认为是自动化行业一个具备光明前景的细分市场。从全球范围看,由于下游消费电子、 汽车 、半导体、医药等行业规模持续扩大,全球机器视觉市场规模呈快速增长趋势,2017年已突破80亿美元,并预计到2020年全球市场规模将达到125亿美元,2025年将超过192亿美元。

相较于前两者,边缘人工智能属于行业“新兵”,但潜力无限。“边缘人工智能主要是由人工智能、5G、IoT等新技术导入后开发出新的应用,发展非常迅速,经常隔几天、隔几个礼拜,就会有新客户打电话来说他们有新的想法和应用,希望得到帮助。”易继辉举例道。

在上述核心市场,安森美半导体智能感知部都做了长时间的投入和布局,包括图像感知,多光谱、高光谱的感知,激光雷达感知、毫米波雷达感知、传感器融合此类深度感知。这些都在推动人工智能和第四次工业革命的进步。

工业人工智能应用,图像传感器是关键

随着智能制造的逐步深入推进,工业机器视觉、机器人、人工智能技术发展迅速,图像传感器是助其发展的关键技术。工业人工智能应用的发展给图像传感器带来了更高的挑战,包括推动了后者在全局快门性能、高速拍摄、大分辨率、使用不可见光谱区域和三维体积深度提供的信息进行关键推断,以及神经网络处理的发展。

易继辉举例说,平板检测是整个工业机器视觉行业中,对图像传感器最有挑战性的应用,从1K、2K、4K一直到8K,像素要求逐渐提高。

具体来讲,平板检测过程分两步:第一步是暗检测,上电前主要检测一些指纹、划痕和其他物理上的问题;第二步是上电以后,检测发光源。LED有一个亮板在后面作为发光源,而OLED,特别是AMOLED(Active Matrix OLED)的每个像素都是一个单独发光源,像素和像素之间发光的强度和色彩的均匀度,都要能够很准确地侦测出来,这就对图像传感器的要求非常高。

“过去检测LED面板上的1颗像素,对应需要9颗像素(3 3),OLED则对应需要16颗(4 4),甚至25颗(5 5)像素。平板检测对图像传感器的像素要求越来越高,从4,500万到1.5亿像素,甚至超过2亿像素。”易继辉说。

易继辉以1.3英寸固定尺寸的图像传感器为例,阐述图像传感器技术发展路线图。首先,图像传感器的分辨率在逐年提升,从过去的200万像素、500万像素、800万像素、1200万像素,逐步升级到现在超过2000万像素。其次,噪声导数相当于图像质量,在同样大小的尺寸下的图像传感器逐年随着像素的增大,图像质量也在不断提高。此外,带宽也是逐年提高。比如,一个29 29mm2标准的工业用摄像头,十年前可能只是200万像素,后来逐渐增加到300万、500万、1200万,今年已经能够用到1600万像素。

“安森美半导体在技术上有非常长时间的积累。”易继辉说,如全局快门,在高速运动下使图像不会有拖影;内校正,像素内的校正,以前都是在系统里通过软件校正,现在直接做到硬件里,像素内部去做图像校正;工艺节点,从110纳米到65纳米,再到45纳米,甚至更小,充分利用了摩尔定律的优势,即成本、尺寸、耗电量都在逐年下降;背照式,在同样尺寸下分辨率越来越高,像素尺寸可能越来越小,感光量、感光度,特别是暗光下,性能可能就会降低,背照式就是用来提高感光能力;堆栈架构,以后就不光是两维空间了,而是三维、堆栈式、两次堆栈、三次堆栈都有可能实现。以后不光把模拟和数字信号放在第二层,甚至于人工智能一些算法放在第三层里,整个图像传感器就是高智能化的图像传感器。

可以预见,图像传感器的开发正在从仅提供RGB和二维坐标信息转移到新的更丰富的形式。图像传感器可提供更多类型的数据,无论是深度数据,还是增加的光谱信息,以及人工智能合并这些数据集并实现高级决策,从而使系统能够通过新的测量和决策机会提供更快、更准确的结果。作为工业机器视觉的领导厂商,安森美半导体会以全方位的智能感知产品阵容和领先的技术,应对工业人工智能应用挑战并推进智能制造的创新。(文/gongkong张丽莹)

解调是调制的逆过程,是从高频已调波中恢复出原低频调制信号的过程。从频谱上看,解调也是一种信号频谱的线性搬移过程,是将高频载波端边带信号的频谱线性搬移到低频端,这种搬移正好与调制过程的搬移过程相反,故所有的具有频谱线性搬移功能的电路均可用于调幅波的解调。

同步解调,它的基本功能就是完成频谱的线性搬移,但为了防止失真,同步检波电路中都必需输入与载波同步的解调载波。同步,指同频率同相位。

一体化工作站正变得越来越轻薄,要求更轻和更小的电源转换器,这通常通过提高开关频率来实现。传统Si MOSFET在高频工作下的开关和驱动损耗是一个关键制约因素。GaN HEMT提供较传统MOSFET更低的门极电荷和导通电阻,从而实现高频条件下的更高电源转换能效。

演示板设计为240 W通用板,它输出20 A的负载电流和12 V输出电压,功率因数超过98%,满载时总谐波失真(THD)低于17%。电源转换器前端采用功率因数校正(PFC) IC,将AC转换为调节的385 V DC总线电压。升压转换器中的电感电流工作于CCM。升压PFC段采用安森美半导体的NCP1654控制器。次级是隔离的DC-DC转换器,将385 V DC总线电压转换为12 V DC输出电压。隔离的DC-DC转换通过采用LLC谐振拓扑实现。次级端采用同步整流以提供更高能效。LLC电源转换器采用安森美半导体的NCP1397,提供97%的满载效率,而同步整流驱动器是NCP4304。

NCP432用于反馈路径以调节输出电压。演示板采用GaN HEMT作为PFC段和LLC段原边的开关,提供0.29 mΩ的低导通电阻和>100 V/ns 的高dv/dt,因而导致开关和导通损耗低,其低反向恢复电荷产生最小的反向恢复损耗。

其中,NCP1654提供可编程的过流保护、欠压检测、过压保护、软启动、CCM、平均电流模式或峰值电流模式、可编程的过功率限制、浪涌电流检测。NCP1397提供精确度为3%的可调节的最小开关频率、欠压输入、1 A/0.5 A峰值汲/源电流驱动、基于计时器的过流保护(OCP)输入具自动恢复、可调节的从100 ns至2 μs的死区时间、可调节的软启动。NCP4304的关键特性包括具可调节阈值的精密的真正次级零电流检测、自动寄生电感补偿、从电流检测输入到驱动器的关断延迟40 ns、零电流检测引脚耐受电压达200 V、可选的超快触发输入、禁用引脚、可调的最小导通时间和最小关断时间、5 A/2.5 A峰值电流汲/源驱动能力、工作电压达30 V。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9163325.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存