半导体管式和板式那个寿命长

半导体管式和板式那个寿命长,第1张

1 引言 高可靠半导体器件在降额条件(Tj=100℃)下的现场使用失效率可以小于10-8/h,即小于10FIT,按照偶然失效期的指数分布推算,其平均寿命 MTTF大于108h,即大于10000年。据文献报导,电子元器件的贮存失效率比工作失效率还要小 一个数量级

4.2 特军级晶体管

JTX2N2405为硅npn开关晶体管, PCM为1W,TO-39封装,生产日期为1974年,已经贮存了32年。特军级晶体管的质量等级高于普军级(JAN),该批器件数量较大,共206支,管芯的图形较大,ICM为1A,内引线用金丝,在管芯处为球焊键合,为70年代的典型键合工艺。在贮存期间,对电参数进行过多次检测,全部符合规范要求,仅有1支管子,小电流hFE (1mA处)有退化迹象。管子的外引线镀金层质量良好,没有锈蚀现象,任抽10支样管做可焊性试验,全部合格,气密性经检测漏率小于10?9Pam3/s。

4.3 早期的宇航级晶体管

JANS2N2222A为硅小功率开关晶体管,TO-18封装,相当于国产管3DK3,该批产品共5支,生产日期为1971年,已经贮存了35年,是美国TI公司早期生产的宇航级晶体管。经电参数检测,全部符合规范要求,hFE在微电流下也没有退化。

该管内引线采用当时典型的金丝球焊工艺,经过DPA检测,内引线键合拉力为2.9~6.5g,芯片剪切力为1.98kg。由于金丝和铝膜的键合在高温下会产生多种金铝化合物,严重时会产生开路失效,因此TI公司在80年代生产的宇航级晶体管2N2219中内引线使用铝丝超声键合工艺,消除了金铝化合物的失效模式。从DPA的数据来看,金丝球焊的键合拉力在贮存35年后,确有退化,2.9g数据为键合点脱开,6.5g为金丝拉断。该批器件的气密性良好,经检测漏率为10-9Pam3/s范围。

4.4 国产晶体管长期储存实例

国家半导体器件质量监督检验中心从1984年起对各种国产高频小功率晶体管进行了许可证确认试验,当时每个品种从工厂抽样150支,用60支分别进行高温储存、工作寿命和环境试验,其余留作仲裁用。全部样品在Ⅰ类贮存条件的试验室保存了20多年,从2006年开始进行了长期贮存器件可靠性研究,现报道其中一例。

3DG79晶体管为中放AGC专用管,生产时间为1983年,对库存100多支样管进行了常温电参数测试,全部符合规范要求,对其中5支标样进行了对比测试,发现hFE在贮存20年后平均下降了16% (年下降率0.8%),说明存在hFE退化机理,但未超出寿命试验失效判据(30%)。

5 结论

高可靠半导体器件的贮存寿命极长,对于气密性良好的金属或陶瓷封装器件,如果内部水汽含量小于5000×10-6,外引线镀层质量良好,在Ⅰ类条件的贮存期限可达到25年,甚至更长。

我国航天部门制订的超期复验标准中对于有效贮存期订的过严,建议参考俄罗斯标准作必要的修订,作为过渡方案,可以将半导体器件的有效贮存期先放宽到5年,这在某重点工程中已证明是可行的。

国内有关部门应加强电子元器件贮存可靠性及评估技术研究,制定相应统一的标准规范。

1、电容的物理意义是电荷随电压的变化量,对于扩散电容,电压引起的电荷变化主要来自于非平衡少子的注入,与产生复合无关,也就与少子寿命无关。所以选第三项

2、扩散电容充放电的过程即非平衡载流子渡过基区的过程,可见充放电的时间就是渡越时间,选第一项

3、发射结注入效率等于1-发射区方阻除以基区方阻,共射极电流放大倍数等于100,从以上两个条件可以得到基区输运因子0.995,基区输运因子等于1-基区渡越时间除以基区少子寿命,最终计算结果为第三个选项

4、没明白题目到底想问啥。

5、共射极电流放大倍数等于分子(基区输运因子乘以发射结注入效率)除以分母(1-基区输运因子乘以发射结注入效率),计算结果是44,选第一项。

6、根据爱因斯坦关系,由于电子的迁移率大于空穴的迁移率,电子的扩散系数大于空穴的扩散系数。在相同的浓度梯度下(材料掺杂和偏置电压相同),显然电子的扩散电流要大于空穴的扩散电流对于PNP管。发射区的扩散电流是电子扩散电流,可见PNP管的发射结注入效率比NPN管低。扩散系数大的电子在基区的渡越时间比较短,基区输运因子等于1-基区渡越时间除以基区少子寿命,可见NPN管的基区输运因子大于PNP管,选第三项。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9164390.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存