有什么巧妙的实验方法测定半导体制冷片的功率?

有什么巧妙的实验方法测定半导体制冷片的功率?,第1张

嗯,实际上很难测量,因为受影响的因素很多。比如热密封不好,外部的热量会进入到你的冷面热面影响测量。或者热面的热扩散至冷面。

给你个不太精确的计算方法吧,测量半导体制冷片两端的电压和电流,然后算出他们的乘积,也就是半导体制冷片消耗的功率。一般的半导体制冷片在散热良好的情况下制冷量是消耗功率的30%~40%,热面的发热量就是消耗功率+制冷量。

DCT2000半导体功率器件静态参数测试仪系统能测试很多电子元器件的静态直流参数(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on))。

测试种类覆盖7 大类别26分类,包括“二极管类”“三极管类(如BJT、MOSFET、IGBT)”“保护类器件”“稳压集成类”“继电器类”“光耦类”“传感监测类”等品类的繁多的电子元器件。

高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)

控制极/栅极电压40V,栅极电流10mA

分辨率最高至1mV / 1nA,精度最高可至0.5%

DCT2000半导体功率器件静态参数测试仪系统适用于功率器件测试还可测试“结电容”,支持“脉冲式一键加热”和“分选机连接”

第一部分:规格&环境

1.1、 产品信息

产品型号:DCT2000

产品名称:半导体功率器件静态参数测试仪系统

1.2、 物理规格

主机尺寸:深660*宽430*高210(mm)

主机重量:<35kg

1.3、 电气环境

主机功耗:<300W

海拔高度:海拔不超过4000m;

环境要求:-20℃~60℃(储存)、5℃~50℃(工作);

相对湿度:20%RH~75%RH (无凝露,湿球温度计温度 45℃以下);

大气压力:86Kpa~106Kpa;

防护条件:无较大灰尘,腐蚀或爆炸性气体,导电粉尘等;

电网要求:AC220V、±10%、50Hz±1Hz;

工作时间:连续;

第二部分:应用场景和产品特点

一、应用场景

1、 测试分析 (功率器件研发设计阶段的初始测试,主要功能为曲线追踪仪)

2、 失效分析 (对失效器件进行测试分析,查找失效机理。以便于对电子整机的整体设计和使用过程提出改善方案)

3、 选型配对 (在器件焊接至电路板之前进行全部测试,将测试数据比较一致的器件进行分类配对)

4、 来料检验 (研究所及电子厂的质量部(IQC)对入厂器件进行抽检/全检,把控器件的良品率)

5、 量产测试 (可连接机械手、扫码q、分选机等各类辅助机械设备,实现规模化、自动化测试)

6、 替代进口 (DCT2000半导体功率器件静态参数测试仪系统可替代同级别进口产品)

二、产品特点

1、程控高压源10~1400V,提供2000V选配;

2、程控高流源1uA~100A,提供40A,200A,500A选配;

3、驱动电压10mV~40V

4、控制极电流10uA~10mA;

5、16位ADC,100K/S采样速率;

6、自动识别器件极性NPN/PNP

7、曲线追踪仪,四线开尔文连接保证加载测量的准确

8、通过RS232 接口连接校准数字表,对系统进行校验

9、不同的封装形式提供对应的夹具和适配器(如TO220、SOP-8、DIP、SOT-23等等)

10、半导体功率器件静态参数测试仪系统能测很多电子元器件(如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等);

11、半导体功率器件静态参数测试仪系统能实现曲线追踪仪(如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on) )

12、结电容参数也可以测试,诸如Cka,Ciss,Crss,Coss;

13、脉冲电流自动加热功能,方便高温测试,无需外挂升温装置;

14、Prober 接口、Handler 接口可选(16Bin),连接分选机最高效率1h/9000个;

15、半导体功率器件静态参数测试仪系统在各大电子厂的IQC、实验室有着广泛的应用;

第三部分:产品介绍

3.1、产品介绍

DCT2000半导体功率器件静态参数测试仪系统是由我公司技术团队结合半导体功率器件静态参数测试仪系统的多年经验,以及众多国内外测试系统产品的熟悉了解后,完全自主开发设计的全新一代“半导体功率器件静态参数测试仪系统”。软件及硬件均由团队自主完成。这就决定了这款产品的功能性和可靠性能够得到持续完善和不断的提升。

半导体功率器件静态参数测试仪系统脉冲信号源输出方面,高压源标配1400V(选配2KV),高流源标配100A(选配40A,200A,500A)栅极电压40V,栅极电流10mA,分辨率最高至1mV / 30pA,精度最高可至0.5%。程控软件基于Lab VIEW平台编写,填充式菜单界面。采用带有开尔文感应结构的测试插座,自动补偿由于系统内部及测试电缆长度引起的任何压降,保证测试结果准确可靠。产品可测试 Si, SiC, GaN 材料的 IGBTs, DIODEs, MOSFETs, BJTs, SCRs 等7大类26分类的电子元器件。涵盖电子产品中几乎所有的常见器件。无论电压电流源还是功能配置都有着极强的扩展性。

产品为桌面放置的台式机结构,由测试主机和程控电脑两大部分组成。外挂各类夹具和适配器,还能够通过Prober 接口、Handler 接口可选(16Bin)连接分选机和机械手建立工作站,实现快速批量化测试。通过软件设置可依照被测器件的参数等级进行自动分类存放。能够极好的应对“来料检验”“失效分析”“选型配对”“量产测试”等不同场景。

半导体功率器件静态参数测试仪系统产品的可靠性和测试数据的重复性以及测试效率都有着非常优秀的表现。创新的“点控式夹具”让 *** 作人员在夹具上实现一点即测。 *** 作更简单效率更高。测试数据可保存为EXCEL文本,方便快捷的完成曲线追踪仪。

3.2、人机界面(DCT2000半导体功率器件静态参数测试仪系统)

第四部分:功能配置

4.1、 配置选项

DCT2000半导体功率器件静态参数测试仪系统的功能配置如下

4.2、 适配器选型

DCT2000半导体功率器件静态参数测试仪系统的适配器有如下

4.3、 测试种类及参数

DCT2000半导体功率器件静态参数测试仪系统的测试种类和参数如下

(1)二极管类:二极管  Diode

Kelvin,Vrrm,Irrm,Vf,△Vf,△Vrrm,Cka,Tr(选配);

(2)二极管类:稳压二极管  ZD(Zener Diode)

Kelvin,Vz,lr,Vf,△Vf,△Vz,Roz,lzm,Cka;

(3)二极管类:稳压二极管  ZD(Zener Diode)

Kelvin、Vz、lr、Vf、△Vf、△Vz、Roz、lzm、Cka;

(4)二极管类:三端肖特基二极管SBD(SchottkyBarrierDiode)

Kelvin 、Type_ident 、Pin_test 、Vrrm、Irrm、Vf、△Vf、V_Vrrm、I_Irrm、△Vrrm、Cka、Tr(选配);

(5)二极管类:瞬态二极管  TVS

Kelvin 、Vrrm 、Irrm、Vf、△Vf、△Vrrm 、Cka ;

(6)二极管类:整流桥堆

Kelvin 、Vrrm、Irrm、Ir_ac、Vf、△Vf、△Vrrm 、Cka;

(7)二极管类:三相整流桥堆

Kelvin 、Vrrm 、Irrm、Ir_ac、Vf、△Vf、△Vrrm、Cka;

(8)三极管类:三极管

Kelvin 、Type_ident、Pin_chk 、V(br)cbo 、V(br)ceo 、V(br)ebo 、Icbo、lceo、Iebo、Hfe、Vce(sat)、Vbe(sat)、△Vsat、△Bvceo 、△Bvcbo 、Vbe、lcm、Vsd 、Ccbo 、Cces、Heater、Tr (选配)、Ts(选配)、Value_process;

(9) 三极管类:双向可控硅

Kelvin、Type_ident、Qs_chk、Pin_test、Igt、Vgt、Vtm、Vdrm、Vrrm、Vdrm rrm、Irrm、 Idrm、Irrm_drm、Ih、IL、C_vtm、△Vdrm、△Vrrm、△Vtm;

(10)三极管类:单向可控硅

Kelvin、 Type_ident、 Qs_chk、 Pin test、 lgt、 Vgt、 Vtm、 Vdrm Vrrm、 IH、IL、△Vdrm△Vrrm、Vtm;

(11)三极管类:MOSFET

Kelvin 、Type_ident、Pin_test、VGS(th) 、V(BR)Dss 、Rds(on) 、Bvds_rz、△Bvds、Gfs、Igss、ldss 、Idss zero 、Vds(on)、 Vsd、Ciss、Coss、Crss、Bvgs 、ld_lim 、Heater、Value_proces、△Rds(on) ;

(12)三极管类:双MOSFET

Kelvin、 Pin_chk、Ic_fx_chk、 Type_ident、 Vgs1(th)、 VGs2(th)、 VBR)Dss1、 VBR)Dss2、 Rds1(on)、 Rds2(on)、 Bvds1 rz、 Bvds2_rz、 Gfs1、Gfs2、lgss1、lgss2、Idss1、Idss2、Vsd1、Vsd2、Ciss、Coss、Crss;

(13)三极管类:JFET

Kelvin、VGS(off )、V(BR)Dss、Rds(on)、Bvds_rz、Gfs、lgss、 Idss(off)、 Idss(on)、 vds(on)、 Vsd、Ciss、Crss、Coss;

(14)三极管类:IGBT

Kelvin、VGE(th)、V(BR)CES、Vce(on)、Gfe、lges、 lces、Vf、Ciss、Coss、Crss;

(15)三极管类:三端开关功率驱动器

Kelvin、Vbb(AZ)、 Von(CL)、 Rson、Ibb(off)、Il(lim)、Coss、Fun_pin_volt;

(16)三极管类:七端半桥驱动器

Kelvin、lvs(off)、lvs(on)、Rson_h、Rson_l、lin、Iinh、ls_Volt、Sr_volt;

(17)三极管类:高边功率开关

Kelvin、Vbb(AZ)、Von(CL)、Rson、Ibb(off)、ll(Iim)、Coss、Fun_pin_volt;

(18)保护类:压敏电阻

Kelvin、Vrrm、 Vdrm、Irrm、Idrm、Cka、 △Vr

(19)保护类:单组电压保护器

Kelvin 、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;

(20)保护类:双组电压保护器

Kelvin、Vrrm、Vdrm、Irrm、Idrm、Cka、△Vr;

(21)稳压集成类:三端稳压器

Kelvin 、Type_ident 、Treg_ix_chk 、Vout 、Reg_Line、Reg_Load、IB、IB_I、Roz、△IB、VD、ISC、Max_lo、Ro、Ext _Sw、Ic_fx_chk;

(22)稳压集成类:基准IC(TL431)

Kelvin、Vref、△Vref、lref、Imin、loff、Zka、Vka;

(23)稳压集成类:四端稳压

Kelvin、Type_ident、Treg_ix_chk、Vout、Reg_Line、Reg_Load、IB、IB_I、Roz、△lB、VD、Isc、Max_lo、Ro、Ext_Sw、Ic_fx_chk;

(24)稳压集成类:开关稳压集成器

选配;

(25)继电器类:4脚单刀单组、5脚单刀双组、8脚双组双刀、8脚双组四刀、固态继电器

Kelvin、Pin_chk、Dip6_type_ident、Vf、Ir、Vl、Il、Ift、Ron、Ton(选配)、Toff(选配);

(26)光耦类:4脚光耦、6脚光耦、8脚光耦、16脚光耦

Kelvin、Pin_chk、Vf、Ir、Bvceo、Bveco、Iceo、Ctr、Vce(sat)、Tr、Tf;

(27)传感监测类:

电流传感器(ACS712XX系列、CSNR_15XX系列)(选配);

霍尔器件(MT44XX系列、A12XX系列)(选配);

电压监控器(选配);

电压复位IC(选配);

曲线追踪仪

第五部分:性能指标

DCT2000半导体功率器件静态参数测试仪系统的性能指标如下

5. 1 、 电流/电压源 ( VIS ) 自带VI测量单元

(1)加压(FV)

量程±40V分辨率19.5mV精度±1% 设定值±10mV

量程±20V分辨率10mV精度±1% 设定值±5mV

量程±10V分辨率5mV精度±1% 设定值±3mV

量程±5V分辨率2mV精度±1% 设定值±2mV

量程±2V分辨率1mV精度±1% 设定值±2mV

(2)加流(FI)

量程±40A 分辨率19.5mA精度±2% 设定值±20mA

量程±4A 分辨率1.95mA精度±1% 设定值±2mA

量程±400mA分辨率1195uA精度±1% 设定值±200uA

量程±40mA分辨率119.5uA精度±1% 设定值±20uA

量程±4mA分辨率195nA精度±1% 设定值±200nA

量程±400uA分辨率19.5nA精度±1% 设定值±20nA

量程±40uA分辨率1.95nA精度±1% 设定值±2nA

说明:电流大于1.5A自动转为脉冲方式输出,脉宽范围:300us-1000us可调

(3)电流测量(MI)

量程±40A分辨率1.22mA精度±1% 读数值±20mA

量程±4A分辨率122uA精度±0.5% 读数值±2mA

量程±400mA分辨率12.2uA精度±0.5% 读数值±200uA

量程±40mA分辨率1.22uA精度±0.5% 读数值±20uA

量程±4mA分辨率122nA精度±0.5% 读数值±2uA

量程±400uA分辨率12.2nA精度±0.5% 读数值±200nA

量程±40uA分辨率1.22nA精度±1% 读数值±20nA

(4)电压测量(MV)

量程±40V分辨率1.22mV精度±1% 读数值±20mV

量程±20V分辨率122uV 精度±0.5% 读数值±2mV

量程±10V分辨率12.2uV 精度±0.5% 读数值±200uV

量程±5V分辨率1.22uV 精度±0.5% 读数值±20uV

5. 2 、 数据采集部分 ( VM )

16位ADC,100K/S采样速率

(1)电压测量(MV)

量程±2000V分辨率30.5mV精度±0.5%读数值±200mV

量程±1000V分辨率15.3mV精度±0.2%读数值±20mV

量程±100V分辨率1.53mV精度±0.1%读数值±10mV

量程±10V分辨率153uV精度±0.1%读数值±5mV

量程±1V分辨率15.3uV精度±0.1%读数值±2mV

量程±0.1V分辨率1.53uV精度±0.2%读数值±2mV

(2)漏电流测量(MI)

量程±100mA分辨率30uA精度±0.2%读数值±100uA

量程±10mA分辨率3uA精度±0.1%读数值±3uA

量程±1mA分辨率300nA精度±0.1%读数值±300nA

量程±100uA分辨率30nA精度±0.1%读数值±100nA

量程±10uA分辨率3nA精度±0.1%读数值±20nA

量程±1uA 分辨率300pA精度±0.5%读数值±5nA

量程±100nA分辨率30pA精度±0.5%读数值±0.5nA

(3)电容容量测量(MC)

量程6nF分辨率10PF精度±5%读数值±50PF

量程60nF分辨率100PF精度±5%读数值±100PF

5. 3 、 高压源 ( HVS ) (基本)12位DAC

(1)加压(FV)

量程2000V/10mA分辨率30.5mV精度±0.5%设定值±500mV

量程200V/10mA分辨率30.5mV精度±0.2%设定值±50mV

量程40V/50mA分辨率30.5mV精度±0.1%设定值±5mV

(2)加流(FI):

量程10mA分辨率3.81uA 精度±0.5%设定值±10uA

量程2mA分辨率381nA精度±0.5%设定值±2uA

量程200uA分辨率38.1nA精度±0.5%设定值±200nA

量程20uA分辨率3.81nA精度±0.5%设定值±20nA

量程2uA分辨率381pA精度±0.5%设定值±20nA

DCT2000 半导体功率器件静态参数测试仪系统 能测很多电子元器件 ( 如二极管、三极管、MOSFET、IGBT、可控硅、光耦、继电器等等 ) 产品广泛的应用在院所高校、封测厂、电子厂.....

http://202.114.89.51:8081/whutqk/document?RecordNo=16&ColumnName=%D4%AD%CE%C4&MultiNo=0&issource=yes&type=bin&channelid=6537

霍尔效应概述

霍尔效应Hall Effect是一种磁电效应,是德国物理学家霍尔1879年研究载流导体在磁场中受力的性质时发现的。

根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

通过该实验可以了解霍尔效应的物理原理以及把物理原理应用到测量技术中的基本过程。

当电流垂直于外磁场方向通过导体时,在垂直于磁场和电流方向的导体的两个端面之间出现电势差的现象称为霍尔效应,该电势差称为霍尔电势差(霍尔电压)。

霍尔效应原理

所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。

利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为

UH=RHIB/d(18)

RH=1/nq(金属)(19)

式中RH——霍尔系数:

n——载流子浓度或自由电子浓度;

q——电子电量;

I——通过的电流;

B——垂直于I的磁感应强度;

d——导体的厚度。

对于半导体和铁磁金属,霍尔系数表达式与式(19)不同,此处从略。

由于通电导线周围存在磁场,其大小与导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。

若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差与电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。

利用这种方法可以构成霍尔功率传感器。

如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号列可以传感出该运动物体的位移。若测出单位时间内发出的脉冲数,则可以确定其运动速度。

霍尔效应在应用技术中特别重要。

霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。

好比一条路,本来大家是均匀的分布在路面上,往前移动.当有磁场时,大家可能会被推到靠路的右边行走.故路(导体)的两侧,就会产生电压差.这个就叫“霍尔效应”。

方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。电流经过ad,电流I = nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。设磁场强度为B。

qVH / a = qvB

VH / a = BI / (nqad)

VH = BI / (nqd)

霍尔效应的应用

根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。

讫今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。

例如:汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。

用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路可以减小这些现象。

霍尔器件通过检测磁场变化,转变为电信号输出,可用于监视和测量汽车各部件运行参数的变化。例如位置、位移、角度、角速度、转速等等,并可将这些变量进行二次变换;可测量压力、质量、液位、流速、流量等。霍尔器件输出量直接与电控单元接口,可实现自动检测。目前的霍尔器件都可承受一定的振动,可在零下40摄氏度到零上150摄氏度范围内工作,全部密封不受水油污染,完全能够适应汽车的恶劣工作环境。

霍尔效应的定义

定义1:

霍尔效应是指当施加的外磁场垂直于半导体中流过的电流时,会在半导体垂直于磁场和电流的方向上产生霍尔电动势

源自:高速磁浮列车磁场测量系统的设计《仪表技术与传感器》2004年田武刚,潘孟春,罗飞路,陈棣湘

来源文章摘要:高速磁浮列车磁场主要分布在列车和轨道之间很小的空气隙中,气隙磁场是一个恒定磁场和交变磁场的叠加磁场,而且磁感应强度很大,最大可达12T.针对高速磁浮列车磁场分布的特殊性,设计了一套两自由度磁场的闭环自动化测量系统。系统的设计基于PC机,可以实现对列车磁场中的固定点和一段距离上的磁场大小的自动化测量,并将测量数据存入数据库以便于进一步处理分析。在列车实验平台磁场的实际测量中,该系统性能稳定,测量范围可达0~15T.

定义2:

种现象即称为霍尔效应.UH称为霍尔电势其大小可表示为:图回霍尔效应原理图式中RH称为霍尔系数由半导体材料的性质决定

源自:霍尔传感器在电参量测量中的应用《中国民航学院学报》1999年刘建英

来源文章摘要:介绍了霍尔传感器在测量交流电参量中的应用,着重分析了采用单片机及霍尔元件测量电功率的几种方法及其优缺点,并提出了本文采用的方法。

定义3:

这个现象称为霍尔效应,所产生的电压差ΔU称为霍尔电压差(也称霍尔电压).由经典电子理论可以解释霍尔电压产生的原因

源自:霍尔效应测量大电流的理论探讨《中国测试技术》2005年袁国胜,刘浙华

来源文章摘要:大电流、大电压的测量一直是困扰工程测量学的难题。本文着重探讨了霍尔效应应用于测量大电流的工作原理、数学推算以及应用中需要注意的几个问题。力图寻求将新技术用于工程测量中难点问题的理论依据

定义4:

一现象称为霍尔效应.产生前电动势称为霍尔电势半导体薄片称为霍尔元件.2.2感应式相序测定仪的工作原理在IOKV线路中B相置于三相线路中间所以只要确定左右两线路的相位即可测定相序

源自:感应式10KV线路相序测定仪《自动化博览》1999年周洪,李崇晟,贺剑锋

来源文章摘要:基于霍尔效应,采用霍尔元件集成电路将高压线路相序的测定工作简单化,使相序测定工作安全、准确,为大范围的配电网技术改造工作提供了得力的工具。

定义5:

其电流I的疗向与磁场H的方向之间有夹角a时,则在载流体中平行丁H、I的两侧面之间将产生电动势,这种物理现象称为霍尔效应

源自:桑塔纳2000型轿车专用霍尔传感器及其...《上海汽车》1998年喻德海

来源文章摘要:本文介绍了桑塔纳2000型轿车专用霍尔传感器的结构及工作原理。

定义6:

1引言美国物理学家霍尔于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间出现了电势差,这一现象称为霍尔效应

源自:不等位电势差《甘肃科技》2004年周珺

来源文章摘要:只要不等位电势差不为零,则测量值就会出现“台阶”,而不等位电势差大于霍尔电压是发生负号突变的根源

定义7:

2霍尔元件在磁场中垂直放置一块通有电流的金属或半导体薄片薄片的两侧之间就会产生电动势这种现象称为霍尔效应.霍尔元件是在霍尔效应原理基础上制成的

源自:霍尔传感器及其应用《中国煤炭》1995年萧光岐

来源文章摘要:霍尔传感器是一种性能优良的磁敏传感器,在煤炭科研和技术革新中有着广泛的应用前景。文章简述了霍尔元件和霍尔集成电路及工作原理,并通过几个应用实例介绍了霍尔传感器在煤炭工业中的应用情况。

定义8:

此现象称为霍尔效应,此电位差称为霍尔电势,图1a表示出霍尔效应原理:在三维空间内,导电板在XOY平面内,它与磁场方向垂直,磁场指向Y轴的方向,沿X轴方向通以电流j,由于运动的电荷与磁场的栩互作用

源自:国内外霍尔线性传感器性能及应用《现代车用动力》1997年张礼林

来源文章摘要:1概述随着汽车电子控制技术的发展,霍尔传感器被大量用于测量转速、转角、角位移、线位移等,其中测转速用的是霍尔开关传感器,其余为霍尔线性传感器。用于测油嘴针阀升程的霍尔传感器与以前采用的电感式传感器相比,具有结构简单、体积小、安装方便等优点。我所于1984年购进两只进口霍尔线性传感器,一直成功地使用至今。

定义9:

此现象称为霍尔效应.设KH为霍尔灵敏度,I为电流强度,B为磁场的磁感应强度,θ为磁感应强度B和霍尔元件平面法线间的夹角

源自:基于霍尔效应的铁磁性磨粒测试方法《煤矿机械》2004年马怀祥

来源文章摘要:为检测润滑油中铁磁性磨粒的含量,根据霍尔效应原理和高梯度磁力分离技术原理设计了铁磁性磨粒检测仪。设计确定了合适的霍尔传感器及后续处理电路。结果表明:利用它能很方便地对机械润滑油中的铁磁性磨粒捕获、测量和分析,为机械状态监测和故障诊断提供了一种方法。介绍了其工作原理、基本结构、电路系统及元件选用。

定义10:

这种物理现象被人们称为霍尔效应.由于金属中自由电子浓度很大,它的霍尔效应十分微弱,所以,当时没有引起人们的重视

源自:霍尔传感器在小型内燃机电控系统中的应用《小型内燃机与摩托车》2001年穆卫强,孙成军,周大森

来源文章摘要:本文介绍了霍尔传感器的原理及其目前在汽车发动机上的一些应用,并对其在摩托车发动机上作为油门位置传感器进行了实验研究

通过霍尔效应测量磁场

在磁场中的载流导体上出现横向电势差的现象是24岁的研究生霍尔(Edwin H. Hall)在1879年发现的,现在称之为霍尔效应。随着半导体物理学的迅猛发展,霍尔系数和电导率的测量已经称为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测得霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。

在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing)等研究半导体在极低温度和强磁场中发现了量子霍尔效应,它不仅可作为一种新型电阻标准,还可以改进一些基本产量的精确测定,是当代凝聚态物理学和磁学令人惊异的进展之一,克利青为此发现获得1985年诺贝尔物理学奖。其后美籍华裔物理学家崔琦(D. C. Tsui)和施特默()在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应。它的发现使人们对宏观量子现象的认识更深入一步,他们为此发现获得了1998年诺贝尔物理学奖。

用霍尔效应之辈的各种传感器,以广泛应用于工业自动化技术、检测技术和信息处理各个方面。本实验的目的是通过用霍尔元件测量磁场,判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,以及了解霍尔效应测试中的各种副效应及消除方法。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9165904.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存