意法半导体简介及详细资料

意法半导体简介及详细资料,第1张

公司概况

意法公司销售收入在半导体工业第七大高速增长市场之间分布均衡(五大市场占2007年销售收入的百分比):通信(35%),消费(17%),计算机(16%),汽车(16%),工业(16%)。据最新的工业统计数据,意法半导体(STMicroelectronics)是全球第五大半导体厂商,在很多市场居世界领先水平。例如,意法半导体是世界第一大专用模拟晶片和电源转换晶片制造商,世界第一大工业半导体和机顶盒晶片供应商,而且在分立器件、手机相机模组和车用积体电路领域居世界前列。

产品阵容

以多媒体套用一体化和电源解决方案的市场领导者为目标,意法半导体拥有世界上最强大的产品阵容,既有智慧财产权含量较高的专用产品,也有多领域的创新产品,例如分立器件、高性能微控制器、安全型智慧卡晶片、微机电系统(MEMS)器件。

在移动多媒体、机顶盒和计算机外设等要求严格的套用领域,意法半导体是利用平台式设计方法开发复杂IC的开拓者,并不断对这种设计方法进行改进。意法半导体拥有比例均衡的产品组合,能够满足所有微电子用户的需求。全球战略客户的系统级晶片(SoC)项目均指定意法半导体为首选合作伙伴,同时公司还为本地企业提供全程支持,以满足本地客户对通用器件和解决方案的需求。

意法半导体已经公布了与英特尔和Francisco Partners合资成立一个独立的半导体公司的合作意向,名为Numonyx的新公司将主要提供消费电子和工业设备用非易失存储器解决方案。

研发制造

自创办以来,意法半导体在研发的投入上从未动摇过,被公认为半导体工业最具创新力的公司之一。制造工艺包括先进的CMOS逻辑(包括嵌入式存储器的衍生产品)、混合信号、模拟和功率制造工艺。在先进的CMOS领域,意法半导体将与IBM联盟合作开发下一代制造工艺,包括32nm 和 22nm CMOS工艺开发、设计实现技术和针对300mm晶圆制造的先进研究,此外,意法半导体和IBM还将利用位于法国Crolles的300mm生产设施开发高附加值的CMOS衍生系统级晶片技术。

意法半导体在全球拥有一个巨大的晶圆前后工序制造网路(前工序指晶圆制造,后工序指组装、封装和测试)。公司正在向轻资金密集型制造战略转型,最近公布了关闭一些旧工厂的停产计画。目前,意法半导体的主要晶圆制造厂位于义大利的Agrate Brianza和Catania、法国的Crolles、Rousset和Tours、美国的Phoenix和Carrollton,以及新加坡。位于中国、马来西亚、马尔它、摩洛哥和新加坡的高效封装测试厂为这些先进的晶圆厂提供强有力的后工序保障。

跨国联盟

意法半导体发展了一个全球战略联盟网路,包括与大客户合作开发产品、与客户和半导体厂商合作开发技术、与主要供应商合作开发设备和CAD工具。此外,意法半导体还与全球名牌大学和知名研究机构开展各种研究项目,通过学术研究促进工业研发活动。意法半导体还担纲MEDEA+等欧洲先进技术研究计画和ENIAC(欧洲纳米技术计画顾问委员会)等工业计画。

卓越原则

意法半导体是世界上第一个认识到环境责任重要性的国际半导体公司之一,早在上个世纪90年代就开始公司的环境责任行动,此后,在环境问题上取得了令人嘱目的进步,例如,在1994年到2006年间,每个生产单位能耗降低47%,CO2排放量降低61%。此外,意法半导体远远走在了现有法规的前面,在制造过程中几乎完全摒弃了铅、镉和汞等有害物质。自1991年起,在质量、公司管理、社会问题和环保等公司责任方面,各地区公司因为表现卓越而荣获100多项奖励。

基本情况

意法半导体(ST)公司成立于1987年,是义大利SGS半导体公司和法国汤姆逊半导体合并后的新企业,从成立之初至今,ST的增长速度超过了半导体工业的整体增长速度。自1999年起,ST始终是世界十大半导体公司之一。

整个集团共有员工近50,000名,拥有16个先进的研发机构、39个设计和套用中心、15主要制造厂,并在36个国家设有78个销售办事处。

公司总部设在瑞士日内瓦,同时也是欧洲区以及新兴市场的总部公司的美国总部设在德克萨斯州达拉斯市的卡罗顿亚太区总部设在新加坡日本的业务则以东京为总部大中国区总部设在上海,负责香港、大陆和台湾三个地区的业务。

自1994年12月8日首次完成公开发行股票以来,意法半导体已经在纽约证券交易所(交易代码:STM)和泛欧巴黎证券交易所挂牌上市,1998年6月,又在义大利米兰证券交易所上市。意法半导体拥有近9亿股公开发行股票,其中约71.1%的股票是在各证券交易所公开交易的。另外有27.5%的股票由意法半导体控股II B.V.有限公司持有,其股东为Finmeanica和CDP组成的义大利Finmeanica财团和Areva及法国电信组成的法国财团剩余1.4%的库藏股由意法半导体公司持有。

产品范围

意法半导体是业内半导体产品线最广的厂商之一,从分立二极体与电晶体到复杂的片上系统(SoC)器件,再到包括参考设计、套用软体、制造工具与规范的完整的平台解决方案,其主要产品类型有3000多种,。意法半导体是各工业领域的主要供应商,拥有多种的先进技术、智慧财产权(IP)资源与世界级制造工艺。

半导体产品大体上可分为两类:专用产品和标准产品。专用产品从半导体制造商以及用户和第三方整合了数量众多的专有IP,这些使其区别于市场上的其他产品,例如:

片上系统(SoC)产品

定制与半定制电路

专用标准产品(ASSP),如:无线套用处理器、机顶盒晶片及汽车IC

微控制器

智慧卡IC

专用存储器

专用分立器件 (ASD™)

一旦客户在套用中使用了专用产品,如果不修改硬体和软体设计,通常就不能进行产品替换。

相反,标准产品是实现某种特定的常用功能的器件,这些器件一般由几个供应商提供。通常,制造商推出的标准产品可以被其他制造商的同类产品所取代,供应商间的差别主要在于成本与客户服务上。然而,一旦套用设计被冻结,标准器件在性能最佳化方面也将变成唯一的器件。

标准产品包括:

分立器件,如电晶体、二极体与晶闸管

功率电晶体,如MOSFET、Bipolar与IGBT

模拟电路构建模组,如运算放大器、比较器、稳压器与电压参考电路

标准逻辑功能与接口

众多存储器产品,如标准或串列NOR快闪记忆体、NAND快闪记忆体、EPROM/EEPROM及非易失性RAM

射频分立器件及IC

自成立时起,意法半导体就成功的实现了在市场开拓方面的平衡,将差分化的专用产品(这些产品通常不容易受到市场周期的影响)与传统的标准产品(这些产品要求较少的研发投入和生产资本密集度)相结合。意法半导体多样化的产品系列避免了对通用产品或专用产品的过分依赖。

专用产品 片上系统

专用产品系列中最复杂的就是SoC器件,该器件在单个晶片上集成了完整的系统。很多情况下,这意味着整个套用的集成,也就是说器件整合了除存储器、无源元件与显示器等无需集成的组件外的所有电子电路。然而,通常在单个晶片上集成整个系统并不是最经济的解决方案,因此SoC这个术语也用于指那些集成了大部分系统的晶片。

SoC技术拓展了半导体行业在一个给定的矽片上持续增加电晶体数目的能力。然而它还涉及很多其他因素,包括系统知识、软体技术、架构创新、设计、验证、调试及测试方法。随着半导体器件在电子设备中的普及其对设备性能、价格、开发时间的重要影响,设备制造商对半导体供应商提供的完整平台解决方案的依赖性也越来越高。如今,半导体供应商可以给客户提供完整地解决方案,包括定制的参考设计、完整的软体包(含有底层驱动软体、嵌入式作业系统以及中间件和套用软体)。

很多SoC产品仅使用CMOS技术就可以制造,但完整的SoC制造技术要求具有将COMS、bipolar、非易失性存储器、功率DMOS及微型机电系统(MEMS)之类的基础技术整合到面向系统的技术(这种技术整合了两种或更多的基础技术)中的能力。多年来,意法半导体一直是开发与采用这些面向系统的技术领域的全球领导者。

SoC器件通常集成一个或多个处理器核,意法半导体为客户提供了世界上最广泛的处理器核,包括主要用于无线与汽车套用的基于32位高性能ARM和基于PowerPC的产品。意法半导体在处理器核技术上采用了开放式方法,旨在为客户提供最合适的处理器核,而不论它是专利的、联合开发的或是第三方授权的。

定制晶片

定制与半定制IC都是为特殊用户而设计的,但它们的设计与制造方法不同。半定制晶片是包含了一系列电路单元的通用晶片,这些单元能够以多种方式实现互连,从而实现想要的功能。而定制晶片则是从零开始设计的。一些客户更喜欢设计自己的晶片(特别是包含了珍贵的IP的晶片)并根据成本、产能分配及先前的业务关系等标准,与晶片制造商达成契约制造。而其他一些客户则更愿意与晶片供应商就设计和制造这两方面达成协定,因此,这儿存在着一系列中间关系。

意法半导体提供了一系列利用世界级制造机械、无与伦比的半导体工艺技术,广泛而深入的IP系列和领先的设计方法的定制与半定制服务。这些成功案例就是采用复杂晶片,推动了大型项目,如美国的XM数字卫星无线电服务与为电子行业的各部分的战略伙伴而提供的领先的解决方案。

标准产品

ASSP(专用标准产品)是为在特殊套用中使用而设计的积体电路。实例包括数字机顶盒晶片、CMOS成像IC、电机控制电路与无线套用处理器。与为单用户的特殊套用而设计的定制IC不同,ASSP是为众多用户通用的特殊套用而设计的。很多ASSP是在与特殊客户密切合作的基础上开发出来的,即使相应器件可能会在开放市场上提供。通过以这种方式与客户合作,意法半导体能够保证其开发的产品与技术能很好地与不断变化的工业需求相匹配。

意法半导体的产品系列包括多种类型的ASSP,针对无线通信与网路、数字消费类、电脑外设、汽车、工业及智慧卡等的主要增长业务套用进行了最佳化。通过提供晶片组与完整的参考平台、公认的软体包与开发套件,公司使得其用户能够快速而经济地开发并区分其产品。

意法半导体的ASSP,包括从移动成像到多媒体处理,再到功率管理和手提式及网路连线的各种套用,满足了广泛的电信套用需求。公司提供了用于广泛的数字消费类套用的元器件,特别侧重于机顶盒、数位电视与数位相机等套用。

在电脑外设领域中,意法半导体主要集中在数据存储、列印、可视显示器、PC主机板的电源管理和电源。广泛的意法半导体ASSP功率/复杂的数字汽车系统,如引擎控制、汽车安全设备、车门模组及车载信息娱乐系统等。公司还提供用于工厂自动化系统的工业IC、用于照明和电池充电的晶片、或电源器件以及用于高级智慧卡套用的晶片。

微控制器

意法半导体的微控制器提供了各类套用,从那些首先要求成本最低的套用到需要强大实时性能与高级语言支持的套用。意法半导体全面的产品系列包含了功能强大的带有标准通信接口的8位通用快闪记忆体微控制器,如USB、CAN、LIN、UART、I2C及SPI专用8位微控制器,可用于无刷电机控制、低噪音模组转换器(LNB)、智慧卡读卡器、USB接口的快闪记忆体驱动器和可程式系统存储器(PSM),此存储器在单晶片上集成了存储器,微控制器和可程式逻辑单元16位的工控标准器件和基于高性能32位ARM核心的快闪记忆体控制器,具有卓越的低功耗特性及高级通信外设(包括乙太网、USB与CAN)。

意法半导体专用的微控制器解决方案有助于加速新兴的低数据率无线网路的开发,如实时定位系统(RTLS)和用于远程监视和控制的Zigbee平台。

安全IC

意法半导体为智慧卡和委托产品套用领域,连同广泛的高速产品系列、可共同使用的片上作业系统(SoC)解决方案提供了完整的安全微控制器和存储器。产品用于各类智慧卡套用,从最简单的电话卡到要求最严格的SIM与Pay-TV卡。安全性一直是意法半导体的一项专门技术,多项正式的安全证明、标准化的成员资格、意法半导体安全IC产品在许多领域(包括银行、IT安全性、电子 *** 、公共运输和移动通信)的成功套用有力的证明了这一点。

存储器

虽然众多存储器产品是标准产品,但意法半导体利用其在非易失性存储器技术领域的优势及其与领先用户间稳固的关系,开发出了各种专用EEPROM和快闪记忆体。与领先的OEM合作,意法半导体开发出了针对手机、汽车引擎控制、PC BIOS、机顶盒与硬碟驱动器之类的特殊套用进行了最佳化的创新产品。

分立器件

ASD产品基于在矽片晶元的顶端与底端实现的垂直或水平双极型架构。ASD™ 技术使得意法半导体能为市场带来各类产品,这些产品可处理大双向电流、保持高电压,并可在单晶片中集成各类分立元件。ASD技术是通用保护元器件、ESD保护器件、EMI滤波器与具有内置过压保护的AC开关的理想解决方案。随着近期工艺的升级,ASD技术允许在单晶片中集成多个分立元器件和无源元件(如电阻、电容与电感),从而产生了IPAD系列(集成无源与有源器件)。ASD的主要套用领域是无线与固定线路通信、家电、PC及外设。

标准产品 存储器

意法半导体为领先套用提供了业内最广泛的存储解决方案。意法半导体是非易失性存储器的主要供应商,包括:NOR和NAND 快闪记忆体。

快闪记忆体组合了高密度及电可擦除性。它们普遍套用于各种数字套用中,如手机、数位相机、数位电视、机顶盒、汽车引擎控制等,这些套用需要在系统可程式能力,并需要即使在没有电源的情况下也要保留数据。

作为全球三大NOR快闪记忆体供应商之一,意法半导体提供了两种主要的快闪记忆体类型:NOR及NAND。NOR快闪记忆体架构提供快速读取性能,是在手机和其他电子器件中进行代码存储与直接片上执行的理想之选。然而,对于高密度数据存储,NAND快闪记忆体较高的密度与编程吞吐量使其成为首选。

意法半导体的非易失性存储器系列还包括EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、串列快闪记忆体及非易失性RAM(Random Aess Memory)。

其他意法半导体的存储器产品还包含多种RFID IC。跟所有标准器件一样,成本与客户服务是供应商之间的主要差异,而意法半导体正在全力最佳化这两个方面。

对于既需要快速代码读取又需要高密度的套用(如现今的多功能手机),意法半导体同样提供了先进的多晶片解决方案,在单晶片封装内组合了不同类型的存储器。

智慧型电源

意法半导体的电源器件满足了对于整合了信号处理部件(模拟和/或数字)和电动促动器的功率解决方案不断增长的需求。此设计能力不仅提供了独有的经济优势,同时还提供了稳定性、电磁性能和降低空音与重量等方面的提高。智慧型电源作为一个专业术语,包括了多种横向及纵向的技术,这些技术在在汽车市场尤其起到至关重要的作用。

VIPower(垂直智慧型电源)是众多专利智慧型电源技术的总称,这些技术中,分立的电源结构现模拟和数字控制及诊断电流相结合,从而使器件可以将分立技术的强劲性与电流的控制与诊断功能相结合。意法半导体的BCD(双极-CMOS-DMOS)生产技术结合了双极、CMOS和DMOS工艺,允许集成越来越多的系统基本功能,如电压稳压器、通信接口以及一个单独元件中的多负载驱动器。

标准器件

意法半导体标准线性器件与逻辑IC由广泛的知名标准器件及针对高度集成、空间有限的套用创新的专用器件组成。产品范围包括逻辑功能、接口、运算放大器、比较器、低功耗音频放大器、通信电路(高速模拟、红外线与RF)、功率管理器件、稳压器与参考电路、微处理器复位与监视器、模拟与数字开关、功率开关、VFD驱动器及高亮度LED驱动器。

分立器件

意法半导体是世界领先的分立功率器件供应商之一,产品范围包含MOSFET (包括运用创新的MDmeshTM第二代技术的器件)、双极电晶体、IGBT、肖特基与超快速恢复双极工艺二极体、三端双向可控矽开关及保护器件。此外,意法半导体的专利IPAD(集成有源和无源器件)技术,允许在单个晶片中整合多个有源和无源元件

RF

意法半导体的RF产品包括可以用于ISM(工业科学和医疗),手机基站之类的套用中的功率RF电晶体。

实时时钟

意法半导体提供了完整的低功耗实时时钟(RTC)产品线,从输入级产品到具有微处理器监视功能、SRAM、非易失性特性与通用减少检测管教实现的高级数据保护的高端RTC。嵌入式软体校准每个月的精度误差仅为2秒。

所获荣誉

2020年5月13日,意法半导体名列2020福布斯全球企业2000强榜第822位。

ST联盟

战略联盟和行业合作

自诞生以来,意法半导体公司成了创建战略联盟的先锋,并在发展与用户、供应商、竞争者、大学、研究机构和欧洲研究项目的关系方面得到了大家的公认。战略联盟和行业合作对于在半导体行业中取得成功变得越来越重要。

意法半导体公司(STMicroelectronics)已经跟包括Alcatel、Bosch、Hewlett-Packard、Marelli、Nokia、Nortel、Pioneer、Seagate、Siemens VDO、Thomson和Western Digital等在内的用户成立了几个战略联盟。用户联盟为意法半导体公司提供了宝贵的系统和套用专长及进入主要产品市场的途径,同时使得它的用户能够分担产品开发的风险,而且还能使用意法半导体公司的工艺技术和生产设施。意法半导体公司现在正在积极利用其丰富的经验和技术来扩展其面向美国、欧洲和亚洲顶级OEM的用户联盟的数量。

在继续在激烈的销售竞争中打拼的同时,与其它半导体行业制造商合作使得意法半导体公司能够增加其对高昂的研究与开发以及生产资源的投资,从而实现技术开发的互利互惠。

意法半导体公司是无线技术领域内的常胜将军,2002年与Texas Instruments合作制定和推广无线套用处理器接口的开放式标准。该创新现已扩展到更多公司,并且以MIPI联盟(创始成员有ST、ARM、Nokia和Texas Instruments)著称。联盟现在拥有超过92个成员,合作成为移动行业的领袖,其目标是制定和推广移动套用处理器接口的开放式标准。

非易失性存储器是意法半导体公司的一个战略产品部门。在该领域中,意法半导体公司已与Hynix合作了4年,联合开发了NAND Flash技术和产品。至于NOR Flash,其已与Intel就无线套用的产品指标结成了战略联盟。并且,最近与Freescale签订协定,联合开发带有嵌入式Flash(采用90nm技术制造而成)的微控制器。

意法半导体公司还与领先供应商制定了联合开发计画,如Air Liquide、Applied Materials、ASM Lithography、Axalto、Canon、Hewlett-Packard、KLA-Tencor、LAM Research、MEMC、Teradyne和Wacker,以及包括Cadence、CoWare和Synopsys在内的领先电子设计自动化(EDA)工具制造商。

至于联合研究与开发计画,意法半导体公司还加入了欧洲合作研究计画,如MEDEA+(微电子技术及其套用领域高级合作研究与开发的泛欧计画)和ITEA2(欧洲发展信息技术,软体密集型系统和服务的高级竞争前研究与开发的战略性泛欧计画)。意法半导体公司还在最近创办的欧洲技术平台 - ENIAC(欧洲纳电子行动顾问委员会,用于提供纳电子的战略性研究方向)和ARTEMIS(嵌入式智慧型与系统先进研究和技术,其作用跟嵌入式系统类似) - 中起主导作用。并且,意法半导体公司还与全球众多大学合作,包括欧洲、美国和中国的大学以及主要研究机构,如CEA-Leti和IMEC。

至于制造业,1998年意法半导体公司在中国深圳建立了其后端组装和测试厂。该厂属于意法半导体公司与深圳市海达克实业有限公司(SHIC)共同组建的合资公司性质。2004年,意法半导体公司与Hynix签署并发表了合资协定,在中国无锡建立前端存储器制造厂。合资公司是公司间NAND Flash工艺/产品联合开发关系的延伸,拥有拟于2006年底投入生产的200-mm晶圆生产线和拟于2007年投入生产的300-mm晶圆生产线。

ST大学 大学简介

以管理和现场培训需求为基准,ST大学开发并部署了在企业范围内进行的战略型培训项目。ST大学与ST的各个培训机构密切合作,推出了用于满足ST和ST大学不断变化的培训需求的培训项目课程。

在ST大学培训目录中,只有一个培训项目是同时面向ST员工和外部工程师的。该技术课程的主要目的是发展微电子制造管理领域中的技术专长。

这个独特的项目是由意法半导体公司和法国2家知名工学院 - "L'Ecole Nationale Supérieure des Mines" de Saint-Etienne 与 "l'Ecole Centrale" Marseille - 合作推出的。它为在当今要求严苛的微电子行业中起着重要作用的工程师提供技术和管理技能。为了跟上微电子行业领先技术的步伐,ST大学每年都会在业内专家、学者和研究员的支持下对整个项目进行改进。ST大学发展并改善了理论课程与套用之间的关系,以及ST业内专家和ST供应商的参与。

课程

该项目分为2个主要部分:

第1部分:着重介绍下列3个领域的基础知识和套用课程:

器件和技术:物理特征工具和制造工艺步骤。

积体电路的开发:设计工具、测试和后端 *** 作。

生产和管理工具:生产设备管理、生产技术、可靠性和质量系统。

第2部分:为期6个月的公司(主要是在ST)实习,着重学习和项目有关的特定科目。

中国联合

意法半导体(STMicroelectronics,简称ST)与中国第一汽车股份有限公司(一汽,FAW)宣布在汽车电子技术领域进行合作,同时在一汽技术中心成立一汽-意法半导体汽车电子联合实验室。联合实验室将面向先进的汽车电子技术方案,研发范围包括动力总成、底盘、安全系统、车身、汽车信息娱乐系统、新能源技术等。一汽将在其先进的汽车电子研发平台内引入意法半导体的微控制器(MCU)、专用标准产品(ASSP)和智慧型驱动晶片。

联合实验室的主要研发方向是先进的汽车电子套用。借助意法半导体的汽车电子研发经验、技术优势、产品(如意法半导体的PowerPC系列32位微控制器和发动机管理系统高集成晶片)、原型设计和技术支持,联合实验室将推动双方在汽车电子技术方面的合作研发,例如,ECU(发动机控制单元)、TCU(变速器控制单元)和EPS(电动助力转向系统),这些研发成果将增强一汽下一代汽车的市场竞争力。

一汽集团副总工程师兼技术中心主任李骏表示:"中国汽车销售量连续三年居全球首位,随着消费者对汽车安全性和舒适度越来越关注,汽车电子市场也在高速增长,中国是一个巨大的汽车半导体市场。一汽与意法半导体建立联合实验室,有助于推动双方的深入合作,提升一汽汽车电子的核心竞争力,促进汽车电子产品的自主创新能力。"

意法半导体大中国与南亚区汽车产品部市场与套用经理Edoardo Merli表示:"我们非常高兴能够与中国领先的汽车OEM厂商一汽合作。意法半导体作为2011年中国排名第一[1]、全球第三[2]的汽车晶片供应商,在动力总成、车身、安全、信息娱乐和车载多媒体方面具有很大的优势,这种优势得到了中国汽车厂商的认可。我们相信,双方的合作也将加强意法半导体在中国汽车电子业的领先地位。"

如今的美国仍是半导体行业发展的优势者,在半导体产业发展之初,美国是如何发展并获得如今的地位?ICViews编译了美国半导体发展的简史,期望从美国半导体的发展历程中找到一些答案。

早期的美国产业政策为各种参与者提供了角色:小公司在技术前沿进行试验,而大公司追求流程改进,来扩大这些创新的规模。美国政府的需求确保了实验在财政上是可行的,而技术转让规定确保了大公司和小公司共享进步。重要的是,定期采购为企业提供了继续迭代所需的流动性,而无需依赖大规模的一次性产品。这种工业政策鼓励创新,确保小公司能够获得国内大规模生产创新设计的机会,同时允许大公司获得大规模生产这些创新设计的好处。

随着行业的成熟和竞争环境的变化,美国政策框架也发生了变化。

自20世纪70年代以来,产业政策逐渐被轻资本的“科学政策”战略所取代,而庞大的龙头企业和轻资产创新者已经取代了一个由大小生产型企业组成的强大生态系统。虽然这一战略最初取得了成功,但它已经造成了一个脆弱的体系。如今,半导体行业一方面受到脆弱的供应链的约束,这些供应链仅为少数拥有庞大资金链的公司量身定制,另一方面又受到许多轻资产设计公司的约束。

尽管美国半导体行业在上世纪90年代重获主导地位,但由于这种政策方针,导致如今美国半导体行业的技术和商业优势比以前更加脆弱。随着台积电的崛起超过英特尔,美国已经失去了前沿技术,美国企业面临着关键的供应瓶颈。疫情暴露出的供应链问题表明:半导体作为一种通用技术,在几乎所有主要供应链中都发挥着作用,且半导体生产是一个至关重要的经济和国家安全问题。虽然政策可以发挥明显作用,但对于技术进步的过程又有其限制性,支持新思想的发展,而不是将新技术转向资本。制程技术的创新是一种实践的过程,需要不断建立与营运新的生产线。但在美国的低资本环境中,半导体产业很难达到边做边学。

半导体供应链的每个部分都有技术创新,并受益于多样化的参与者和动态的劳动力市场。劳动力不仅是技术前沿的成本中心,而且是创新过程的关键投入。在解决目前的短缺问题时,政策制定者应该认识到半导体产业政策的教训,创建一种强劲竞争生态系统来激励创新。

在半导体行业成立之初,美国政府利用产业政策和科学政策帮助培育了半导体企业的多样化生态。财政支出为这个高度投机的行业提供了必要的流动性。为了保持创新和充满活力的竞争生态系统,战略也需要持续的干预。

美国美国国防部(DoD)使用采购协议和准监管措施来确保公司的生态系统和技术进步的广泛传播。美国政府合同为早期的公司创造了一个现成的市场,美国国防部渴望扮演第一客户的角色。由于确信会有大规模半导体生产的需求,对于许多早期的小公司来说产能投资在财务方面是可行的。

作为许多公司的核心客户,美国国防部对行业的最新技术发展有着清晰的看法,并利用这种看法直接促进公司和研究人员之间的对话和知识共享。与此同时,“第二来源”合同要求美国国防部购买的任何芯片都必须由至少两家公司生产,将采购与技术转让联系起来。美国国防部甚至要求贝尔实验室和其他大型研发部门公布技术细节,并广泛授权他们的技术,确保所有可能与美国国防部签约的公司都能获得创新的基石。

这一体系加快了行业的创新步伐,并迅速蔓延。政府采购协议确保了投资者的支出意愿,而且也增加了用于重复生产的资本货物的支出,从而帮助流程得到显著改进。与此同时,工人在整个系统中自由流动,可以在一家公司获得的知识应用于改善其他公司的生产流程。

在这种竞争环境下,结合那个时代的反垄断做法,鼓励大公司发展大型研究实验室,鼓励小公司进行疯狂的实验。成功的实验帮助创建了新的大公司,或者被已经存在的大公司扩大规模。来自美国国防部的行业指导帮助推动技术向新的方向发展,同时保持行业产能的一致性和针对性。至关重要的是,这一战略在隐性上优先考虑的是整个板块新技术的发展,而不是让任何一家公司的收入最大化或成本最小化。如果公司需要投资并持有资本货物的话,也有融资的渠道。政府保护这个行业不受所谓的“市场约束”的影响,以便产业把重点放在创新和生产上,而不是狭义的经济成功上。

然而,到20世纪60年代末,行业发展迅速,导致政府采购以及政府通过第二源合同等实施准监管的能力已经变得相对不重要了。20世纪40年代末,半导体行业的存在是以军事采购为基础的,但到60年代末,军事采购在市场中所占的比例不到四分之一。

20世纪70年代:蓬勃发展的商业市场

这一时期,尽管美国政府采购和指导相对不重要,但由于商业应用的繁荣和缺乏严肃的国际竞争,美国国内半导体公司迎来了黄金时代。

虽然产业政策促进了早期的创新和产能建设,但在20世纪70年代,政策的相对缺失却几乎没有被注意到。可以肯定的是,政府采购在20世纪70年代仍然发挥了一定的作用,但随着私营企业开始将电子产品纳入其供应链,它们成为了更重要的采购商。开始大规模生产计算机也与半导体的发展有着共生关系,因为芯片的需求推动了封装和集成的进步。

事实上,美国国防部的优先级和商业客户的优先级出现了分歧。美国国防部为特定的军事问题寻找合适的解决方案,尤其是基于非硅的或宇宙级的半导体的开发,这些涉及的商业应用很小。政府和半导体公司都认识到,这个行业不再需要直接指导。所以,双方的需求开始出现分歧。

在20世纪70年代,蓬勃发展的非国防市场意味着成功的小公司和大公司在没有政府支持或协调的情况下也能共存。技术的改进转化为工艺的改进,后者反过来又推动了前者的进一步改进。MOS IC、微处理器、DRAM等新发明将行业推向了新的高度,并递归式地提出了进一步的创新路径。

在普遍繁荣和创新的环境下,半导体展现出作为通用技术的重要性,在整个经济中都得到了广泛应用。尽管美国的大型研究实验室以及制造部门持有了大量资产,但在国际上缺少竞争以及市场的蓬勃发展确保了无论是在创新还是利润方面,大多数投资最终都是可行的。

20世纪80年代:国际竞争激烈

然而,这种竞争环境所带来乐观情况在上世纪80年代被打断,当时,在日本国际贸易产业省的产业政策指导下,美国将市场和技术主导地位拱手让给了日本企业。

美国政府最初不得不创建半导体市场,而日本能够围绕一个快速增长且已经存在的市场制定产业政策。因此,日本能够采取比美国严厉得多的建设基础设施的政策,协调计算机和半导体领域的合资企业,因为日本知道自己的产品有现成的商业市场。虽然政府支持和协调投资的战略与美国在五六十年代使用的战略相同,但用于实施该战略的战术是为适应上世纪80年代的竞争环境而量身定做的。

来自日本的竞争对美国公司产生了巨大的影响。在随后的市场动荡中,许多人永久退出了DRAM市场。行业还成立了倡导小组来进行生产协调,并游说政府对关税和实施贸易政策进行干预。半导体工业协会游说要对日本的“倾销”采取保护措施,同时成立了半导体研究公司,组织和资助与商业市场相关但与美国国防部无关的半导体开发方面的学术研究。半导体制造联盟由行业成员与美国国防部共同资助,一开始的目的主要是用较早期的产业政策推动企业之间的横向合作。但是,为了成本的最小化,联盟很快就把重点转向供应商与制造商之间的垂直整合上面。

落后的半导体已经成为商品,可互换,并根据单位成本进行判断。由于技术和经济因素的共同作用,传统的垂直整合公司在20世纪80年代开始解体。鉴于当时美国的经济形势,在竞争激烈得多的全球市场上,人们几乎没有兴趣投资于低附加值活动的产能。

相反,大公司吸纳了小公司仍然拥有的生产力,创建了大企业集团。MOS晶体管作为行业主导设计的出现,公司开始采用类似的设计原则,使专攻制造的“代工厂”变得经济。随后的垂直解体导致了大型、垂直整合的企业集团的出现,与专注于设计的小型“无晶圆厂”公司共存,这些公司进行设计,但不生产芯片。理论上,这些“无晶圆厂”公司在追求创新设计策略的同时最小化成本,且保留了灵活性。20世纪90年代,随着美国公司开创新的产品类别,日本公司面临来自韩国的竞争,美国行业对这一战略的接纳导致了市场份额的复苏。

在政策方面,美国从未回归到国内产业政策。相反,国外产业政策计划的成功是国内整合、垄断、贸易保护主义以及科学研究资金合力来实现的。

20世纪90年代:科学政策,而非产业政策

20世纪80年代本行业面临着技术和竞争环境的变化,90年代则见证了美国新的“科学政策”走向高潮。20世纪90年代,无论是美国过去采取的那种政策,还是更多受到日本通产省影响的做法,美国都没有重返产业政策,而是将“科学政策”的引入视为政府在半导体制造领域采取行动的新范式。科学政策的重点是促进与公司个体的公私合作,让行业研发与学术研发更紧密地结合,保证研究力量的广泛性,形成可支持轻资产运营的创新型公司的行业结构。

政策目标从创建一个具有强大供应链的强大竞争生态系统转变为创建公私机构,以协调研究人员、无晶圆厂设计公司、设备供应商和大型“冠军企业”之间的复杂切换。这样一来,没有企业需要在研发上投入过量的资金,从而保持全球成本竞争力,而政府也可以避免大规模投资支出。下面的图表来自于半导体行业协会制作的1994年美国国家半导体技术路线图,展示了科学政策背后的策略:

“科学政策”的中心主题是非冗余的效率,这与早期的产业政策侧重于冗余和重复,形成对比。早期产业政策大大加快创新步伐,并确保了单个公司的失败不会影响供应链的稳健,但这确实意味着大量的重复投资。尽管这种方法有助于推动流程改进的采用,静态股东价值最大化表明,这种重复在经济上太浪费了。

过去几十年的产业政策促进了大规模就业,这是创新的核心驱动力。而20世纪90年代的“科学政策”为了最低效率而避免了这种做法。员工频繁更换公司,边做边学是创新的核心途径。事实上,《经济地理》中的“非交易的相互依赖”文献在一定程度上解释了半导体行业工人群体的融合对该行业的快节奏创新是多么重要。虽然在一个地方保持大量的工人是许多进步的关键,但在这个新的竞争环境中,这被视为一种浪费。劳动力在单位成本中占有相当大的比例,企业相信,如果他们能有策略地缩小规模,全球竞争力就会恢复。

在半导体行业的早期,相对价格不敏感的政府合同占总销售额的很大一部分,这种低效率被看作是创新的成本。随着外国竞争对手的加入,成本敏感的商业市场成为半导体的主要买家,这种能力的复制似乎像是一个纯粹的成本中心,对很多公司却没有什么好处。对盈利能力的担忧意味着要确保重复的工作要尽可能少,以便在对价格敏感、竞争激烈的环境下控制成本。这造成了一个集体行动的问题,即削减开支符合每个企业的利益,但这样做进一步恶化了美国企业的创新能力。

在20世纪90年代,美国政府没有回到产业政策,而是选择了成本低得多的科学政策项目。理想情况下,“科学政策”将允许政府协调企业相互矛盾的节约愿望,而不会在技术上进一步落后。然而,为了符合时代精神,美国政府也在努力节约,不会为产业政策在新的竞争环境中取得成功提供所需的大规模财政支持。

相反,政府将花费更少的钱,并尝试开创一种劳动分工,允许所有参与者在不牺牲技术前沿的前提下削减成本,以追求利润。为此,它一方面资助学术研究实验室的研发,另一方面资助产业集团将研究转化为商业能力。在某种程度上,这进一步降低了单个公司的研发投资,因为进步只创造了最小的竞争优势。这种结构没有建立具有重叠供应链的生态系统,而是形成了一种分工,每家企业与机构都负责一个明显可分割的单独部分。同时,宽松的贸易政策与密切的贸易网络,让企业能更经济地进入无工厂模式,发展轻资产战略。目的是通过解决一个集体行动问题,减少整个系统的冗余,从而为公共和私营部门以最经济的方式重新夺回技术前沿。

在短期内,这个策略奏效了!到上世纪90年代末,美国半导体和其他技术领域的投资普遍繁荣,美国成功地恢复了技术优势。这个行业得以在保持国际竞争力的同时,又不需要国内产业政策大规模财政支持的情况下进行创新。大多数公司个体把研发重点集中在生产过程开发的下一两个节点上,而更长期的研究则是由政府资助的学术研究人员来组织。产业团体介入,将这种学术研究转化为商业行为,并在很大程度上消除了研发和生产的重复劳动成本。大型集中的研究实验室被掏空,供应链变得更狭隘,仅针对少数核心公司的研究需求。

21世纪:互联网泡沫破灭和收益递减

然而,这种策略的短期成功是以巨大的长期成本为代价的。劳动力和资本的冗余有助于确保公司能够快速改进内部化流程,同时也培训下一代工程师和技术人员。虽然从单一时期股东收益静态最大化的角度来看,这种重复可能是多余的,但它对确保长期创新轨迹至关重要。“消除冗余”和“增加脆弱性”是同一枚硬币的两面。

从长期来看,劳动力和资本投资不足会在某些方面显现出来,无论是在资产负债表上,还是在创新能力上,或者两者兼而有之。就目前情况而言,美国有可能失去其在尖端设计方面的优势,而且在尖端制造领域的霸主地位已在很大程度上被台积电夺走。将投资过程中的一部分分配给每家公司可能会使每家公司的资产负债表看起来更加稳健,但由于持续的投资不足,整个行业已经变得更加脆弱。数十年的劳动力成本最小化使得熟练技术人员和工程师的数量减少,而数十年的产能投资不足也阻碍了国内企业应对目前劳动力短缺的能力。

该行业目前的问题是科学政策战略的长期自然结果,该战略在上世纪90年代末和21世纪初似乎非常成功。整合和垂直整合的驱动力集中在学术实验室的长期研究、庞大的“冠军企业”和轻资产的“无晶圆厂”创新者,创造了一个摇摇欲坠的竞争生态系统。

由于这些冠军企业在竞争格局中占据的比例非常大,它们的研发优先级和中间投入需求为整个行业设定了条件。像英特尔这样的大买家可以或明或暗地利用他们的相对垄断权力,围绕他们的需求来构建供应链。当更广泛的经济需求发生转变时,例如疫情爆发以来,这些脆弱的供应链很容易出现问题。这种脆弱性是供应链优化的结果,但这种优化针对的是短期盈利能力以及消除冗余,而不是针对整个经济的需求。

无论是有意还是无意,这些大型也会围绕自身的财务需求和计划来制定技术发展道路。因此,学术实验室的研发与税收优化和私营企业单位成本最小化相结合的政策组合,创造了重大的技术路径依赖。与此同时,从技术意义上讲,这些企业“太大而不能倒”:如果它们错过了流程改进,同样规模的国内竞争对手的缺席意味着整个行业都错过了这一进步。在这个意义上,技术政策作为一个整体被委托给了私营行为者。

从研发到生产的过程,也出现不一致的反馈。科学政策的关键是将知识产权的创新与生产过程的创新分开;也就是说,科学政策优先考虑研究、设计与创意,而不是实施、生产与投资。因此,专注于设计的无工厂公司兴起,并将制造外包给海外的代工厂。

然而,把研发放在首位反而会降低创新的速度。单是补贴研发跟激励离岸外包没有什么区别:政策奖励的是知识产权的发展,而不是有形资产的所有权。问题在于,过程改进来自于新物理资产所包含的新技术的实施。“边做边学”是技术创新的关键部分。优秀的工程师希望对供应链每一个环节的生产过程的每一个步骤都进行创新。前沿设计的离岸和外包生产给流程周围引入了一个黑箱,导致收益无法实现最大化的类似问题无法得到纠正。只把焦点放在研发上,会把这些过程改进的发展离岸化,导致国内的生产商吃不饱,同时还阻碍了劳动力开发新技能。

学术研究偏离了商业化的道路,无法驱动产业的创新。考虑到学术研究往往围绕着与当前生产相关性低的问题展开,因此有时无法为现有技术的替代应用或替代过程驱动的创新路径提供见解。由于科学政策让这个群体负责整个行业的长期创新战略,这一盲点不能被忽视。事实上,摩尔定律的失败,以及在许多应用中为异质芯片设计独特的转变,这些都很好地说明了创新在任何时候往往都暗示着技术发展存在。

数十年来在工业产能和就业方面的投资失败,造成了美国企业高度依赖外部制造工厂的局面。台积电目前投资于一家中国台湾本土制造工厂的计划,表明该公司试图通过收购来解决这个问题,而不减少我们对单一供应商提供领先设计的依赖。相反,我们应该回顾半导体生产初期的产业政策 历史 ,重新夺回技术前沿,在供应链的每一个节点上推动创新。

如今,美国面临着半导体短缺和创新能力减弱的问题,政策制定者正考虑采取严肃的干预措施。虽然现在解决目前的短缺可能已经太晚了,但可以防止下一次短缺。美国两党对基础设施支出的广泛支持、疫情后重建得更好的必要性,以及对半导体采购的国家安全担忧,都应该鼓励政策制定者认为,现在正是进行雄心勃勃的改革的时候。如上所述,半导体产业政策的 历史 为如何最好地创造高就业、技术创新和强大的国内供应链提供了许多经验教训。

历史 表明,科学政策是产业政策的必要补充,但本身是不够的。协调研发是任何解决方案的必要组成部分,但并非全部解决方案。为了获得工艺改进,并确保劳动力具备在技术前沿 *** 作的足够技能,该行业需要看到持续的产能扩张。然而,正如我们之前所显示的,在低需求环境下,私营企业明显不愿进行不确定的投资。产业政策,通过结合政府采购和融资担保、直接融资等方式,是为该行业提供充足流动性的唯一途径,以确保产能扩张足够快,该行业保持在技术前沿。同时,政府有财政能力让国内企业生产落后的半导体产品,以保障国家安全和供应链的d性理由。从长远来看,以股东最大化为目标的产业外包政策尚未形成。

同样重要的是要认识到强劲的经济需求和因此而紧张的劳动力市场,特别是半导体生产的劳动力市场,对这些政策的成功至关重要。由政府主导的强有力的投资建设将为各种经验和技能水平的人创造良好的就业机会。这将创造高技能的劳动力,以及驱动有意义的过程改进的边做边学的充足机会。在高技能、高资本密集度的行业,劳动力几乎就像另一种形式的资本商品,为投资支付明显的红利。然而,在缺乏足够的就业机会的情况下,这些专业技能会随着工人转向其他行业而消失。这并不是说提高劳动力技能就足够了:如果立法创造了培训项目,却没有同时创造必要的就业机会和投资,那么很快就会弄巧成拙。

在半导体和其他关键行业的产业政策所需的资金投入规模上,一些人可能会犹豫不决。这是一个巨大的市场,有着巨大的价格标签,现代制造工厂的成本高达数十亿美元。然而,半导体是一种关键的通用技术,几乎进入每一个供应链。大规模的产业政策可以防止瓶颈时期拖累经济增长,同时为国家安全需求创建一个强大的国内供应链。相对于最初对半导体技术的投资,回归产业政策的成本要高得多,但回报会更高。作为4万亿美元基础设施或两党供应链法案的一部分,振兴落后和领先的行业,并恢复一个强大的竞争生态系统,是一项不容错过的好投资。

政策目标很简单:制定一个扩大的产业政策工具包,以鼓励创新、国内劳动力市场紧张以及维护关键的供应链基础设施。半导体作为一个产业,由于投资规模和所需的工作岗位,是制定这些政策工具的理想起点。重建一个强劲的创新环境,也将有助于美国持久地回到技术前沿,并创造就业和投资,在未来几年带来回报。半导体在现代工业经济中发挥着至关重要的作用,它们的技术路线太重要了,不能以短期盈利能力为指导。政府有机会也有责任利用产业政策在下一次短缺发生之前阻止它,同时确保美国保持其在技术前沿的地位。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9194972.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存