有机半导体光催化剂,更有效地利用太阳能制造氢气

有机半导体光催化剂,更有效地利用太阳能制造氢气,第1张

显著增强氢气产生的有机半导体光催化剂可开发更有效的能量存储技术。

化石燃料的燃烧正在导致危险的气候变化,从而推动了对更清洁可再生能源的寻找。迄今为止,太阳能是最丰富的可再生能源,但要释放其潜力,需要一种方法来存储它以备后用。

储存太阳能的标准方法是使用析氢光催化剂(hydrogen evolution photocatalysts,HEP)将能量储存在分子氢的化学键中。当前,大多数HEP由单组分无机半导体制成。这些只能吸收紫外线波长的光,这限制了它们产生氢的能力。

由KAUST太阳能中心的伊恩·麦卡洛克(Iain McCulloch)领导的团队与来自美国和英国的研究人员合作,现已开发出由两种不同的半导体材料制成的HEP。他们将这些材料掺入有机纳米粒子中,可以对其进行调整以吸收更多的可见光谱。

该研究的第一作者扬·科斯科(Jan Kosco)说:“传统上,无机半导体已用于光催化领域。但是,这些材料主要吸收紫外光,其可利用的太阳光不到太阳光谱的百分之五。因此,它们的效率受到限制。”

该团队首先使用了一种称为微乳液(miniemulsion)的方法,其中有机半导体的溶液借助稳定的表面活性剂在水中乳化。接下来,他们加热乳液以驱除溶剂,剩下表面活性剂稳定的有机半导体纳米颗粒。

通过改变表面活性剂,它们能够控制纳米颗粒的结构,将它们从核-壳结构转变为混合的供体/受体结构。共混结构使它们能够在供体聚合物和非富勒烯受体之间引入异质结。

科斯科解释说:“两种结构以相同的速率吸收光,但是在核-壳结构中,只有光生空穴到达表面;然而,在混合结构中,空穴和电子都到达纳米粒子的表面,从而增强氢气的产生。

HEP表现出的氢释放速率比单组分无机HEP所能达到的氢释放速率高一个数量级。 这为下一代储能技术奠定了基础。

麦卡洛克说:“我们目前正在研究由半导体的不同混合物形成的纳米粒子的性能,以更好地了解其结构-活性关系。我们正在寻求为其他光催化反应设计纳米粒子光催化剂,例如生成氧气或二氧化碳还原。”

“激子”这个概念还是用在有机半导体中的比较多,无机半导体一般称为“载流子”。激子的波尔半径简言之就是激子在半导体中一个能自由运动的区域的半径。平均自由程是指激子在运动时的一个空间尺度。形象的说,比如在某半导体里激子的自由程是1nm,那这个激子在做无序运动时“跳一下”平均能跳出1nm远。但是如果你的半导体的尺寸比激子的波尔半径还小,激子的活动空间本来就没那么大,跳一下就跳不出1nm了。这称之为“量子限域效应”。在这个很小的尺度内,激子密度很大,很拥挤。能带也随之发生变化。这种现象一般见于非常小尺度的半导体中,如半导体量子点、量子阱等等中。

一、指代不同

1、纳米粒子:是指粒度在1—100nm之间的粒子(纳米粒子又称超细微粒)。属于胶体粒子大小的范畴。

2、量子点:是在把激子在三个空间方向上束缚住的半导体纳米结构。

二、特点不同

1、纳米粒子:处于原子簇和宏观物体之间的过度区,处于微观体系和宏观体系之间,是由数目不多的原子或分子组成的集团,因此既非典型的微观系统亦非典型的宏观系统。

2、量子点:具有分离的量子化的能谱。所对应的波函数在空间上位于量子点中,但延伸于数个晶格周期中。一个量子点具有少量的(1-100个)整数个的电子、电洞或电子电洞对,即其所带的电量是元电荷的整数。

三、应用不同

1、纳米粒子:用纳米粒子进行催化反应可以直接用纳米微粒如铂黑、银、氧化铝、氧化铁等在高分子聚合物氧化、还原及合成反应中做催化剂,可大大提高反应效率,利用纳米镍粉作为火箭固体燃料反应触媒,燃烧效率可提高100倍;催化反应还表现出选择性。

2、量子点:很多现代发光材料和器件都由半导体量子结构所构成,材料形成的量子点尺寸都与过去常用的染料分子的尺寸接近,因而像荧光染料一样对生物医学研究有很大用途。

参考资料来源:百度百科-量子点

参考资料来源:百度百科-纳米粒子


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9206279.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存