半导体缺陷 有哪些表征方法?谢谢啦

半导体缺陷 有哪些表征方法?谢谢啦,第1张

GaN LED自1995年日本中村先生成功研制以来,近几年其技术以惊人的速度迅猛发展。在可靠性方面,虽然在上、中、下游研发和生产等各个环节中备受重视,但是外延材料对器件可靠性和性能的影响研究,受上游至下游产业学科跨度大的限制,分析实验难度较高;与其他半导体器件一样的有些理念虽为业内人士所知晓,因缺少对应的分析实验和规范的试验方法,故在GaN-LED方面无明确的对应关系。本文通过试验并分析GaN-LED外延片晶体质量对其LED芯片光电参数分布及器件性能的影响,提出较系统的实验方法,验证了LED外延晶体缺陷对器件可靠性的基础作用,为外延材料结构与生长工艺的优化和改善提供依据。

1 试验概述

试验晶片为采用金属有机化学气相淀积(MOCVD)方法,在2英寸(50mm)蓝宝石衬底上生长的GaN基LED外延结构[1-2]。外延生长完成后,首先通过高倍金相显微镜检查外延层表面形貌,再用Bede-Q2000双晶X光衍射(DMXRD)仪对选定外延片晶格结构特性进行分析测试。然后采用常规的GaN-LED芯片工艺,将外延片制成330μm×300μm的LED芯片,其典型的外延材料和芯片结构如图1。采用LED-617型光电参数测试仪,进行芯片光电参数测试。用环氧树脂将管芯封装成蘑菇状Φ5mm的LED单灯器件供可靠性试验。LED器件参数采用SPC-4000LED光电参数测试仪测量,ESD试验则采用ETS910静电模拟发生器考核器件抗静电能力,而样品电老化试验则在自己研制的恒流老化仪上进行。

2 外延与芯片检测

在外延片表面外观检查中,选取较为典型的外观作为样片进行跟踪对比分析:外延片样品(Ep1)表面存在明显缺陷(图2),同时在(Ep1)这一炉次中和其他正常炉次中各选取一片表面无明显缺陷样品(Ep2和Ep3),以便跟踪对比分析。

2.1 X射线双晶衍射(XRD)分析

对于外延材料质量的评估,除检查表观特征外,可用X射线双晶衍射方法、光致发光谱(PL)、霍尔效应测试等对外延片晶体质量进行检测。其中X射线双晶衍射方法具有独特的优点,即可以无损伤、准确、制样简单地进行材料检测,可精确地确定晶格结构参数,尤其是晶格应变,特别适合测量外延晶片的结构特性。因此,本文选择了缺陷附近和远离缺陷两类区域,通过测量其双晶回摆曲线,以了解外延层晶格常数的微小差异、晶格扭曲、微小应变、缺陷附近的应力场情况以及晶片的d性或范性弯曲等特征[3]。图3为Ep1-1缺陷附近的回摆曲线。其中主峰为GaN外延层的(0002)衍射峰,其左右两侧InGaN多量子阱的衍射峰依然清晰,可见双晶回摆曲线是缺陷附近晶格结构参数的整体效果。

详细比较其他区域和其他晶片的双晶回摆曲线,容易观察到GaN(0002)衍射主峰半峰宽的差异,测试结果见表1。缺陷附近半峰宽明显大于远离缺陷区域和正常晶片,晶格失配较正常严重,表明缺陷不只影响观察到如图2所示的1mm大小区域,它将导致其附近区域晶格的畸变。

2.2 芯片光参数分布图

将外延样片按常规的GaN-LED芯片工艺,同批生产制成330μm×300μm的芯片管芯,采用LED-617型光电参数测试仪进行光电参数测试,输出相应参数分布图。其中Ep2、Ep3对应的电致发光(EL)分布未见异常,而样片Ep1的(EL)分布如图4所示。从图4(a)清晰显示,发光强度随离开样片中心区域而减弱,多数不发光区域位于样片边沿;最为显著的不发光区域与样片制成管芯前缺陷区域一致,如图中所标,不发光区域尺度明显大于外延层缺陷的表观尺度,可见外延片中的缺陷将直接导致周边区域管芯的失效。而其他区域管芯波长分布较均匀,如图4(b)所示。由于发光波长取决于外延层中多量子阱宽度和势垒的高度,管芯波长分布的均匀性反应了外延工艺过程的精确性。综合上述两方面的结果,可以认为,外延层的缺陷起始于衬底,如果外延过程未能得到抑制,它造成缺陷及附近外延层所制成的LED芯片丧失发光特性;此外区域虽然失配严重,但芯片光电参数未见异常。

3 可靠性试验结果的验证与分析

按照设定的试验分析比较方案,分别从三片对应外延片中抽取合格芯片样品,进行可靠性分析试验。芯片样品组Cp1-1抽自Ep1-1外观缺陷片缺陷附近区域的参数正常芯片;样品组Cp1-2分别抽自Ep1-2外观缺陷片远离缺陷区域的上下左右四个区域;样品组Cp2和Cp3分别抽自Ep2和Ep3的上下左右四个区域。同时封装成器件后,进行可靠性试验,其中一组进行抗静电能力试验,两组做电老化加速寿命试验。

3.1 对抗静电能力试验的影响[4]

静电放电(ESD)容易引起GaN基发光二极管pn结的击穿,造成器件失效,因此抗静电能力的高低直接体现LED器件可靠性。采用晶体管图示仪作为试验前后的电性能参数测试,ETS910静电模拟发生器对待测样品进行放电,条件为标准人体模型,正反向连续放电3次,间隙为1s,测试结果(表2)表明,当静电电压较低时,所有样品的抗静电能力未见差别,但随着电压的上升,差别明显加大。取自Ep1-1外观缺陷片缺陷附近区域的样品Cp1-1组的抗静电能力最差,而其他三组差别不明显。

在外延材料结构中,InGaN有源层的势阱、势垒的宽度窄,器件ESD失效机理相对复杂[5],试验结果统计显示,晶体质量较差、失配严重所对应的器件被静电击穿而失效的概率较其他器件要大得多。可见当器件受到静电冲击时,外延结构晶体中的缺陷及其附近晶格畸变严重和位错密度高的薄弱位置将容易被击穿。

3.2 电老化试验[6]

发光二极管的退化主要包括管芯和环氧树脂等缓慢退化。在本文的试验中,环氧树脂退化的影响将尽可能降低。由于GaN基LED可靠性水平的不断提高,其超长的工作寿命,已不可能通过正常应力条件下的寿命试验来验证,故采用两种加速条件进行老化试验:①采用高温恒流的高恒定热电应力加速老化试验,试验条件为正向电流40mA,环境温度60℃,时间96h,其试验结果见表3;②采用高恒定电流应力加速老化试验,试验条件为正向电流30mA,环境温度25℃,时间1008h,结果见表4。光通量退化曲线如图5所示。

试验结果表明,四组样品光输出退化趋势基本相似,体现样品器件的电老化总体综合情况,其之间的差异是由芯片造成的。无论是高温恒流加速老化或者是高恒定电流老化试验,取自Ep1-1外观缺陷片缺陷附近区域的样品Cp1-1组的光衰都最大,因所有样品的封装条件一样,故器件光输出退化速率的差别应为管芯所造成。由于缺陷对载流子具有较强的俘获作用,在有源层中形成无辐射复合中心,使光效降低,而注入载流子的无辐射复合又使能量转化为晶格振动,导致缺陷和位错等造成载流子泄漏和非辐射复合中心的增多,使得器件内量子效率下降速率加快[7]。

首先是突破下一代节点集成电路制造缺陷在线检测技术。不仅能打破以美国为首的技术封锁,解决“卡脖子”问题,还能提升我国制造业整体水平,在跨领域科技发展中具有重要影响和引领作用。同时带来巨大的经济效应和国际影响力,占据国际竞争的最高点。缺陷检测设备是我国半导体产业链中最薄弱的环节之一。研制集成电路高灵敏度缺陷在线检测技术和装备迫在眉睫。

其次是利用集成电路芯片对传统机床进行智能化改造,形成了数控机床的新兴产业。汽车电子化是提高汽车安全性、舒适性、经济性等性能的重要措施,引发了汽车工业的新革命。为传统产业定制的处理、控制、存储相关的集成电路,不仅将重构传统产业的发展生态,也将带动集成电路产业的发展。

再者对于短沟道器件,器件的阈值电压随着沟道长度的减小而降低,而饱和电流随着沟道长度的减小而增大。但在实际工艺中引入卤素离子注入后,器件的阈值电压并没有随着沟道长度的减小而降低,而是先升高后降低。业界称这种效应为逆效应。短通道效应。热载流子注入效应,载流子在沟道的强电场作用下加速形成热载流子,与晶格碰撞电离。

另外要知道全球7nm及以下节点的在线缺陷检测技术尚不成熟,设备差距依然巨大。谁先掌握了相应的关键技术,谁就掌握了未来的主导地位,这对我国来说既是机遇也是挑战。因此,突破下一代节点集成电路制造缺陷在线检测技术,不仅能打破以美国为首的技术封锁,解决“卡脖子”问题,还能提升我国制造业整体水平。,并对跨领域科技的发展产生重大影响。引领带动作用,同时带来巨大的经济效应和国际影响力,占据国际竞争的最高点。

没有。调研晶圆没有在通电状态下的瑕疵检测。通电状态检测调研晶圆是有风险的,因此不存在。晶圆的检测有以下两种方法。

1、针对晶圆表面缺陷自动检测技术进行了研究,并结合项目研究的晶圆特点,在高速高精度检测系统中,快速准确地检测出晶圆表面缺陷检,设计了基于深度学习的视觉缺陷检测算法。

2、自动检测技术在半导体行业中,晶圆表面缺陷检测设备可以使用电子束检测设备和光学检测设备。

3、


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9213872.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存