PIN结锂漂移型半导体探测器

PIN结锂漂移型半导体探测器,第1张

PN结金硅面垒型半导体探测器,2 mm厚度灵敏区仅相当于1.1MeV β射线的射程。为了探测高能射线而采用锂漂移技术,在P型和N型半导体材料之间形成一个本征半导体区,可获得厚度大于10 mm的灵敏区。称为PIN结锂漂移型半导体探测器。

如图4-3-2所示,在P区电子是少数载流子,空穴浓度比电子多很多;在N区空穴是少数载流子,电子浓度比空穴浓度多得多。在I区,电子和空穴浓度相等,P、I和N型三者连接后,电子和空穴扩散结果,在P、N和I区的界面附近分别形成正、负空间电荷区(见图4-3-2)。形成I区内电场Ei。

在PIN结两端加上反向电压,内电场Ei将得到增强。与PN结类似,I区即为探测射线产生电离的灵敏区,厚度较大,可以探测高能射线。

图4-3-2 PIN结探测器示意图

锂在硅和锗中的电离能很低(在硅中为0.033 eV,在锗中为0.093 eV),很容易电离而且离子半径仅有0.06 nm。在P型硅或锗表面镀一层锂,而锂很快穿过硅或锗的晶格,处于晶格之间成为施主杂质。在PIN结所加反向电压作用下,锂电离成锂离子与受主结合成中性分子,使I区内电子和空穴大大减少,起到“补偿”作用,形成电阻率很高的本征区。

硅和锗加上锂作为漂移材料制成锗锂漂移探测器——Ge(Li);或硅锂漂移探测器——Si(Li)。锗锂漂移探测器有两种:即平面型和同轴型。目前平面型为圆片状只能获得15~20 mm厚的本征区。同轴型为圆柱状,中心小圆柱为P区,外层为N区,中间为I区(本征区)。目前Ge(Li)灵敏区可达150 cm3左右,体积较大。Ge(Li)探测器主要用于γ能谱测量,能量分辨率很好。必须在低温下(液氮-196℃)工作和保存。

Si(Li)探测器,主要用于X射线能谱测量,在1~100 keV范围有很高的能量分辨率;也可用于β射线测量。必须液氮温度下工作,可以在室温下保存。

半导体探测器有两个电极,加有一定的偏压。当入射粒子进入半导体探测器的灵敏区时,即产生电子-空穴对。在两极加上电压后,电荷载流子就向两极作漂移运动﹐收集电极上会感应出电荷,从而在外电路形成信号脉冲。但在半导体探测器中,入射粒子产生一个电子-空穴对所需消耗的平均能量为气体电离室产生一个离子对所需消耗的十分之一左右,因此半导体探测器比闪烁计数器和气体电离探测器的能量分辨率好得多。半导体探测器的灵敏区应是接近理想的半导体材料,而实际上一般的半导体材料都有较高的杂质浓度,必须对杂质进行补偿或提高半导体单晶的纯度。通常使用的半导体探测器主要有结型、面垒型、锂漂移型和高纯锗等几种类型。金硅面垒型探测器1958年首次出现,锂漂移型探测器60年代初研制成功,同轴型高纯锗(HPGe)探测器和高阻硅探测器等主要用于能量测量和时间的探测器陆续投入使用,半导体探测器得到迅速的发展和广泛应用。

结型探测器  结构类似结型半导体二极管,但用于探测粒子时要加上足够的反向偏压。这时电子和空穴背着PN结移动而形成灵敏区。结型探测器一般采用硅单晶。这是因硅具有较大的禁带宽度,可用以保证在室温下工作时有足够小的漏电流。此外它的灵敏层厚度一般只有1毫米左右,故只适于探测穿透力较小的带电粒子。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/9218130.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存