怎么求出函数的解析式?

怎么求出函数的解析式?,第1张

1、对函数进行特殊值赋值

如令x=0,可得y=0,令x=1,y=1,令x=2,y=9,依次类推,得到若干点。

2、在纸上画出xOy直角坐标轴并将第一步所得点在坐标轴上点出。

3、将所得点连起来,并根据已知图像的形状和函数性质画出y=x^2的图像。

z=x+iy

代入得:f(z)=(x+iy)³+2i(x+iy)

=x³+3ix²y-3xy²-iy³+2ix-2y

=x³-3xy²-2y+i(3x²y-y³+2x)

则:u=x³-3xy²-2y,v=3x²y-y³+2x

解析要求满足柯西黎曼条件

∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x

∂u/∂x=3x²-3y²,∂v/∂y=3x²-3y²二者相等

∂u/∂y=-6xy-2,∂v/x=6xy+2二者互为相反数,满足柯西黎曼条件,因此该函数在复平面处处解析

f '(z)=3z²+2i

有柯西积分定理 f'(z)=1/2πi ∫f(w)dw/(w-z)^2 对选定的点z积分轨道选在以z为圆心,R为半径的圆上,由题,存在M>0使得对任何w,|f(w)|<M 则|f'(z)|<=1/2πM/R^2 2πR=M/R 令R趋于无穷

则得f'(z)=0 所以f(z)是常值函数

很明显,x+yi

中,直角坐标系中,y轴是虚部x轴是实部;它可以看成坐标轴的另外一种表现形式,只是复数可以简化向量运算。

而函数可用直角坐标系中的图像表示。

故解析函数可以写成复数z的函数。

如:|z|=1

与x^2+y^2=1

x+yi中最基本的是模=(x^2+y^2)^(1/2)

这就是直角坐标系中点到原点距离。

有了这个,你就知道如何看一个复变函数的图象:

只要你用z=x+yi化简,即可

如|z-1+i|=0

(x-1)^2+(y+1)^2=4这是圆

同样|z-1|+|z+1|=2是椭圆

|z-2|-|z+2|=2是双曲线;

直线A(Z+Z')+B(Z-Z')+C=0

(Z'代表Z共轭复数)

圆|Z-Z0|=R

椭圆|Z-Z1|+|Z-Z2|=2a

双曲线|Z-Z1|-|Z-Z2|=2a

抛物线|Z+Z'|^2=m|Z-Z'|,(共四个)

将y=f(x)化为复数形式:

设x=(z+z')/2

y=(z-z')/(2i)

则:代入y=f(x)即可。

如x^2+y^2=1

(z+z')^2-(z-z')^2=4

4zz'=4

zz'=1

|z|^2=1

|z|=1

 函数项级数的连续性和可导性的证明方法如下:

设想在稳定流动的液体中,截取一个截面积很小的流管,在流管中我们取任意两个截面A、B,它们的面积分别为S1和S2。我们所截取的流管横截面积S1和S2,要求小到所有通过S1的流线都有相同的速度V1,通过S2的流线都有相同的速度V2。

那么我们定义:在某一时间里,通过某一横截面上的液体体积和时间的比叫做通过这个横截面的流量。如果用Q表示在时间t内通过截面S的流量,那么

式中V表示通过截面S的液体的体积,并从此式可以看到流量的单位应是m3/s。

扩展资料:

这是描述流体流速与截面关系的定理。当流体连续不断而稳定地流过一个粗细不等的管子,由于管中任何一部分的流体都不能中断或挤压起来。因此在同一时间内,流进任意切面的流体质量和从另一切面流出的流体质量应该相等。

在同一流管内流体的流速和它流经的截面积成反比,即截面积大的地方流速小,截面积小的地方流速大。如果所取流管中两处截面积相等,那么流体通过的速度也相同。

-连续性定理

函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:

1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.

2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.

3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.

本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.

Ⅰ 深化对函数概念的认识

Ⅱ 系统小结确定函数三要素的基本类型与常用方法

1.求函数定义域的基本类型和常用方法

由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字

任何一个函数的解析式都可看作一个方程,在一定条件下,方程也可转化为表示函数的解析式.求函数解析式还有两类问题:

(1)求常见函数的解析式.由于常见函数(一次函数,二次函数,幂函数,指数函数,对数函数,三角函数及反三角函数)的解析式的结构形式是确定的,故可用待定系数法确定其解析式.这里不再举例.

(2)从生产、生活中产生的函数关系的确定.这要把有关学科知识,生活经验与函数概念结合起来,举例也宜放在函数复习的以后部分.

四、函数的性质、图象

(一)函数的性质

函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.

复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.

3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.

这部分内容的重点是对函数单调性和奇偶性定义的深入理解.

函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.

对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.

这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

(二)函数的图象

1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.

2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.

3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.

4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.

以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.

运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点

五、函数综合应用

函数的综合复习是在系统复习函数有关知识的基础上进行函数的综合应用:

1.在应用中深化基础知识.在复习中基础知识经历一个由分散到系统,由单一到综合的发展过程.这个过程不是一次完成的,而是螺旋式上升的.因此要在应用深化基础知识的同时,使基础知识向深度和广度发展.

2.以数学知识为载体突出数学思想方法.数学思想方法是观念性的东西,是解决数学问题的灵魂,同时它又离不开具体的数学知识.函数内容最重要的数学思想是函数思想和数形结合的思想.此外还应注意在解题中运用的分类讨论、换元等思想方法.解较综合的数学问题要进行一系列等价转化或非等价转化.因此本课题也十分重视转化的数学思想.

3.重视综合运用知识分析问题解决问题的能力和推理论证能力的培养.函数是数学复习的开始,还不可能在大范围内综合运用知识.但从复习开始就让学生树立综合运用知识解决问题的意识是十分重要的.推理论证能力是学生的薄弱环节,近几年高考命题中加强对这方面的考查,尤其是对代数推理论证能力的考查是十分必要的.本课题在例题安排上作了这方面的考虑.

具体要求是:

1.在全面复习函数有关知识的基础上,进一步深刻理解函数的有关概念,全面把握各类函数的特征,提高运用基础知识解决问题的能力.

2.掌握初等数学研究函数的方法,提高研究函数的能力,重视数形结合数学思想方法的运用和推理论证能力的培养.

3.初步沟通函数与方程、不等式及解析几何有关知识的横向联系,提高综合运用知识解决问题的能力.

4.树立函数思想,使学生善于用运动变化的观点分析问题.

本部分内容的重点是:通过对问题的讲解与分析,使学生能较好的调动函数的基础知识解决问题,并在解决问题中深化对基础知识的理解,深化对函数思想、数形结合思想的理解与运用.

难点是:函数思想的理解与运用,推理论证能力、综合运用知识解决问题能力的培养与提高.

函数的综合运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.因此,运动变化、相互联系、相互制约是函数思想的精髓,掌握有关函数知识是运用函数思想的前提,提高用初等数学思想方法研究函数的能力,树立运用函数思想解决有关数学问题的意识是运用函数思想的关键.

1.准确理解、熟练运用,不断深化有关函数的基础知识

在中学阶段函数只限于定义在实数集合上的一元单值函数,其内容可分为两部分.第一部分是函数的概念和性质,这部分的重点是能从变量的观点和集合映射的观点理解函数及其有关概念,掌握描述函数性质的单调性、奇偶性、周期性等概念;第二部分是七类常见函数(一次函数、二次函数、指数函数、对数函数、三角函数和反三角函数)的图象和性质.第一部分是理论基础,第二部分是第一部分的运用与发展.

2.掌握研究函数的方法,提高研究函数问题的能力

高中数学对函数的研究理论性加强了,对一些典型问题的研究十分重视,如求函数的定义域,确定函数的解析式,判断函数的奇偶性,判断或证明函数在指定区间的单调性等,并形成了研究这些问题的初等方法,这些方法对分析问题能力,推理论证能力和综合运用数学知识能力的培养和发展是十分重要的.

函数、方程、不等式是相互联系的.对于函数f(x)与g(x),令f(x)=g(x),f(x)>g(x)或f(x)<g(x)则分别构成方程和不等式,因此对于某些方程、不等式的问题用函数观点认识是十分有益的;方程、不等式从另一个侧面为研究函数提供了工具.

掌握好这些当然能准确的列出一个函数解析式!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/langs/11670453.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存